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ABSTRACT 
 

The treatment of tumours using microbeads for embolization and drug delivery is a 

widely used, but often ineffective, technique. In this work, we aim to produce 

microbeads for this application with four main improvements: visibility, targetability, 

degradability, and an alternative route for drug loading. We accomplish this through the 

fabrication of ~100µm diameter microbeads composed of poly(vinyl alcohol) (PVA), 

iron oxide nanoparticles, and cellulose nanocrystals (CNC) using a custom-designed 

microchannel system. Characterization demonstrated that microbeads were magnetic, 

as well as visible under clinical CT. Separately, the dissolution of PVA iron oxide 

hydrogels exposed to different environmental conditions was studied. Iron release and 

mass loss was demonstrated, and the weakening of material was confirmed using 

mechanical testing. This shows the potential for microbeads composed of this material 

to ‘degrade’ over time. PVA iron oxide CNC microbeads are promising as a 

multifunctional visualization and delivery system.  

 

 

 

 

 

 

 

 

Keywords 
Multifunctional delivery system, microbeads, trans-arterial chemoembolization, 

localized delivery, computed tomography, microfluidics, poly(vinyl alcohol), iron 
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1 CHAPTER 1 – Overview and Objectives 
 

1.1 Overview 

The development of multifunctional drug delivery systems addresses many of the 

issues associated with current approaches to cancer treatment, such as the toxic and 

unspecific nature of chemotherapy. Microbeads are widely used as a drug-eluting 

embolization material in the treatment of hepatocellular carcinoma. However, there are 

specific areas of improvement that are needed. Namely, microbeads that can be 

visualized with the use of clinical imaging techniques, degraded following therapeutic 

use, and be better targeted to a specific location are extremely desirable. They must also 

have the ability to load and release drug molecules in a favourable way.  

To achieve these goals, we investigate the production and use of a multifunctional 

system composed of a poly(vinyl alcohol) (PVA) matrix loaded with iron oxide 

nanoparticles and cellulose nanocystals (CNC). The iron oxide nanoparticles, which are 

biocompatible, non-toxic, and have magnetic properties, act as a contrast enhancement 

agent that allows visualization as well as magnetic targeting. Additionally, the 

incorporation of iron oxide changes the properties of a PVA hydrogel to allow for 

subsequent dissolution of the material. CNC, which are also biocompatible, can provide 

a high surface area for drug loading within the microbeads. 

The first section of this thesis describes the design of a system for production of these 

microbeads, as well as bead fabrication. Microbeads are characterized in terms of size, 

structure and morphology, iron oxide presence in the form of magnetite, and iron oxide 

nanoparticle distribution. They are also imaged under computed tomography (CT) to 

demonstrate their visibility.   

The second part of this work relates to the dissolution of this material. PVA is a 

biocompatible and biostable polymer that can be physically crosslinked, using a low 

temperature thermal cycling process (LTTC), to form nondegradable hydrogels, useful 
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in many biomedical applications. In addition to physical crosslinking, iron oxide 

nanoparticles have been shown to provide a certain level of crosslinking in PVA. We 

investigate the use of iron oxide as a crosslinking agent in conjugation with the LTTC 

process to form a dissolvable PVA hydrogel.  

The focus of this work involves the production of multifunctional microbeads with 

many advantageous properties that make them a desirable candidate for use in cancer 

treatment. Through the production and investigation of PVA iron oxide CNC 

microbeads, we will demonstrate their unique and multifunctional properties, and the 

study of the PVA iron oxide hydrogel will explore the dissolution properties of this 

advantageous biomaterial.  

 

1.2 Objectives 
1. To develop a method of production for PVA iron oxide CNC microbeads of an 

appropriate size and successfully demonstrate their fabrication. 

2. To characterize the microbeads and examine them under clinical imaging 

techniques to demonstrate visualization. 

3. To study the use of iron oxide incorporation as well as the LTTC process to 

crosslink PVA hydrogels and study their dissolution as a function of changing 

environmental conditions.  
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2 CHAPTER 2 – Literature Review  

2.1 Cancer and Hepatocellular Carcinoma 

Worldwide each year, there are an estimated 12.7 million new cases of cancer and 7.6 

million cancer deaths [1]. Even though there are numerous treatment options, more than 

50 percent of patients eventually die from progressive metastasis because they either do 

not respond to therapy or they relapse afterward [2].   

Specifically, primary liver cancer is the fifth most commonly diagnosed type of cancer 

in men and the seventh most common in women worldwide. In terms of deaths caused 

by cancer, liver cancer ranks second in men and sixth in women. In 2008, an estimated 

748,300 new liver cancer cases were diagnosed worldwide. Hepatocellular carcinoma 

(HCC), a primary malignancy of the liver, makes up 70% to 85% of total global liver 

cancers [3]. The main contributors of HCC are the hepatitis B virus infection, hepatitis 

C virus infection, alcohol-related cirrhosis and possibly nonalcoholic fatty liver disease. 

In many parts of the world, incidence rates of liver cancer are increasing. In some 

developed regions, this could possibly be a result of the obesity epidemic and rise in 

hepatitis C virus infection [4-6]. 

2.2 Current Treatment Methods and Products 

Treatment of HCC can be either curative or palliative. Curative treatment, which results 

in complete responses in a large percentage of patients, includes resection, liver 

transplantation, and percutaneous treatments such as ethanol injection, cryoablation or 

radiofrequency ablation. However, less than one third of patients, are eligible for these 

treatments [7] based on factors including the stage of the underlying disease, the cancer 

progression and the liver functional status [2,8]. The next options, for intermediate 

HCC, include chemotherapy, embolization, or a combination of the two –  

chemoembolization. The best candidates for chemoembolization are patients with 

preserved liver function and asymptomatic multinodular tumours that have not spread 

into vessels or outside of the liver [7,8]. 
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Trans-arterial chemoembolization (TACE) is a technique that has been used clinically 

for over 30 years [9] as a loco-regional treatment, which is essentially the physical 

targeting of therapeutics to a particular site (eg. drug infusion into the organ bearing the 

tumour). TACE (Figure 2.1) is a minimally invasive procedure, performed by 

interventional radiologists, in which chemotherapy, followed by an embolization agent, 

is infused as close to the tumour site as possible, through a catheter. This is done by 

feeding a catheter through the femoral artery, into the hepatic artery and then to specific 

branches in attempt to limit delivery to tumour tissue. Gelfoam in 1mm cube 

preparations is a commonly used embolization agent, but poly(vinyl alcohol), alcohol, 

starch microspheres, metallic coils, or autologous blood clots have also been used 

[8,10-14]. Typically, Lipiodol®, an oily, radio-opaque contrast agent, is injected along 

with the chemotherapeutic agent [8].  

	
  

Figure 2.1 Schematic describing the principles of TACE. Access is gained in the 

femoral artery (left) and a hepatic artery is selected by use of a guidewire and a 

catheter (middle). A micro-catheter is then often positioned in a tumour feeding 

artery (right). From this location, TACE is performed by infusing a mixture of 

chemotherapeutics and embolic agents (right). Reprinted from [15] with 

permission. Copyright (2012) Elsevier 

Because HCC is a primary liver cancer, TACE therapy is an appropriate treatment 

approach. Alternatively, metastatic liver cancer can occur, which results from 

metastasis of a primary tumour in another location in the body. Due to the differences 

in the vasculature of these two types, and the need for a more systemic treatment 

approach for metastatic cancers, treatment with TACE is typically used for primary 
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cancers [2]. Blood supply to the liver is provided by the hepatic artery (25%) and the 

portal vein (75%). Most liver tumours receive blood principally from the hepatic artery 

[2]. Therefore, for intermediate HCC tumours, prevention or limitation of blood flow 

through the hepatic artery to the tumour is a logical means of causing ischemia, which 

leads to tumour necrosis.  

Chemotherapy is known to have very harmful side effects for patients due to the high 

toxicity of the drugs administered. Systemic delivery of these therapeutic agents results 

in the unwanted killing of non-cancerous tissue. Furthermore, rapid clearance of the 

drug molecules is an issue, and to overcome this, multiple doses of these toxic agents 

are required in order for the desired effect to take place on the tumour. Even loco-

regional treatment, where the drug is infused directly into the organ containing the 

tumour, does not solve these problems. Controlled delivery devices offer a solution. 

Liposomes, hydrogels, polymer-based disks, rods, pellets and micro or nanoparticles 

are all systems that are used to encapsulate therapeutic agents and provide sustained 

release [16]. Drug-encapsulating polymer microspheres is one category of drug delivery 

system that has been studied extensively to release therapeutic agents in a controlled 

rate over a longer period of time compared to conventional approaches. Moreover, the 

ability to tune loading and release rates allows for better control and tailoring to a 

specific application. Additionally, drugs that are otherwise rapidly cleared by the body 

can be administered in fewer doses. The benefits provided by controlled delivery 

devices often result in an increase in patient comfort and compliance [16]. Polymer 

microspheres are a good option because they can be biocompatible, provide high 

bioavailability, and sustain release over a long period of time. However, disadvantages 

for polymeric microspheres include the difficulty of large-scale manufacturing, 

maintaining the stability of drug molecules, and difficulty in controlling the rates of 

drug release [16].  

More specifically, hydrogels are a subcategory of polymers that possess properties that 

are highly advantageous for drug delivery purposes. Hydrogels are crosslinked polymer 

networks with high water content. They are highly porous, which allows drugs to 

diffuse into the structure during loading, and out during release. Furthermore, hydrogel 
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porosity can be controlled by altering the density of crosslinks in the matrix [17]. 

Finally, they are typically biocompatible due to their high water content and similarity 

of their chemical composition and mechanical properties to that of native extracellular 

matrix [17]. Advancements have been made toward the development of stimuli-

responsive or “smart” hydrogels, which incorporate a triggering mechanism for drug 

release such as pH, temperature, pressure, electric field, chemicals, or ionic strength 

[18]. 

Doxorubicin (Dox) is one of the most common drugs used to treat cancer [19]. It is a 

useful therapeutic for HCC treatment and its cytotoxicity is a result of several 

mechanisms including intercalation in DNA leading to inhibition of DNA replication or 

RNA transcription, DNA damage or lipid peroxidation, disruption of DNA unwinding, 

strand separation or helicase activity, and topoisomerase II inhibition leading to 

apoptosis. Its high toxicity has actually hindered its effectiveness as a treatment option 

[20]. Negative effects of Dox include cardiotoxicity, nephrotoxicity, myelosuppresion, 

multiple drug resistance, nausea, vomiting, stomatitis, alopecia, vesicant reaction, 

radiation recall, and transient memory loss [20]. Many strategies have been explored to 

encapsulate Dox in a carrier. Some strategies include encapsulation of Dox within 

liposomes [19,21], polymeric micelles [22-24] and nanoparticles [25,26]. 

Commercialized products include Doxil®, a PEGylated (stealth) Dox liposome; 

Myocet®, a non-PEGylated liposomal Dox formulation; and the DC Bead®.  

The DC Bead, the first commercially available embolic drug-eluting bead (DEB), was 

launched in 2004 in Europe by a company called Biocompatibles. The beads are made 

of poly(vinyl alcohol), modified with N-acryloyl-amino-acetaldehyde dimethylacetal 

and crosslinked with 2-acrylamido-2-methylpropanesulphonate sodium (AMPS) salt 

forming a spherical bead [2,27]. They are fabricated using an inverse suspension 

polymerization technique to produce beads in the range of 100 to 900µm in diameter 

[28], and are composed of ~95% water within the network of polymer chains. The 

sulphonic acid groups present on the AMPS chains allow for conjugation of drug 

molecules through ion exchange. In order for this to occur, the beads are suspended in 

solution containing the desired drug molecule. The DC bead is free of drug when given 
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to the physician, and is subsequently submerged in a solution containing the drug, like 

doxorubicin hydrochloride, for several hours. The positively charged Dox in solution is 

able to diffuse into the polymer network and displaces sodium ions bonded to the SO3
- 

groups, with a drug uptake over 99% providing there are no additional ions competing 

for ion exchange. The maximum doxorubicin loading is 37.5mg/mL of beads. The 

doxorubicin drug-eluting bead is called DEBDOXTM, with an alternative being 

DEBIRITM, containing Irinotecan, another anticaner drug [2]. 

DEBs have been shown to be effective in accomplishing tumour necrosis while 

reducing systemic chemotherapeutic levels. The release of doxorubicin from DEBs in 

DEB-TACE therapy compared to conventional TACE shows a dramatic decrease in the 

initial serum doxorubicin levels (Figure 2.2). This suggests that the amount of 

chemotherapeutic could be increased to tumour tissue while also reducing toxicity 

compared to conventional TACE [29].  

	
  

Figure 2.2 Dox serum levels of DEB-TACE and conventional TACE. 

Measurements of serum doxorubicin levels at different time points in DEB-TACE 

patients (A), and in the conventional TACE group (B). Reprinted from [29] with 

permission. Copyright (2007) Elsevier 

DEBs are typically used in volumes of 1-4mL to provide therapeutic levels of drug to 

the site [2]. Recommendations for the use of DEBDOX include a loading dose of 25mg 
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Dox/mL beads usually with a locally administered dose of 100mg Dox (lower than 

recommended maximum of 150mg Dox for a given procedure) [27]. Other 

recommendations suggest that a total loading of 50-75mg doxorubicin in 2mL (25-

37.5mg Dox/mL beads) is optimal [30]. A review of recent clinical results concluded 

that the optimal available bead size is the 100-300µm range as this size results in less 

complete stasis, which allows for repeat treatment, providing the potential for a greater 

cumulative dose. This small bead size resulted in fewer and less severe adverse event 

rates [31]. Dreher et al. found that even smaller DEBs (70-150µm versus 100-300µm) 

were able to penetrate further into the target tissue and had greater spatial frequency or 

density [32]. Lee et al. also found that the smaller diameter beads in their study (100-

300µm versus 300-500µm) were able to reach the tumour, or get in close proximity to 

it, more effectively [33]. However, there is a limit to how small the beads can be. 

Particles greater than 10µm must be used as small capillary diameter is around 5-8µm 

[34]. Furthermore, work completed on embolization in rat models reported that 

particles of at least 40µm are required for embolization to prevent distribution to other 

organs such as the spleen or lung [35].  

2.3 Necessary improvements to current approaches  

As was described in a review by Kerr [36], the ideal drug delivery and embolic system 

for regional treatment of cancer should be deliverable by catheter, appropriate size for 

embolization of target vessels, biocompatible and non-immunogenic, have no drug-

device incompatibility issues, carry a therapeutic dose of a drug, and provide 

controlled, local release in therapeutic levels [2]. These goals have been reasonably 

achieved with the currently administered DEBs. However, there are still many ways 

that this therapy can be improved.  

A recent review by Lewis and Dreher discussed loco-regional drug delivery using 

image-guided intra-arterial drug-eluting beads. They presented some drawbacks to the 

currently available procedures and products and suggested the future directions for 

DEB-TACE. Some of these presented suggestions include the need for imageable 
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DEB-TACE, the tailoring of bead size to the arterial anatomy of the tumour, the 

development of degradable DEBs, and the use of DEB combination therapy [15]. 

Multifunctional systems, in which two or more materials are incorporated into one 

system, have certainly been noted as a beneficial system for cancer therapy because of 

the ability to accomplish multiple goals at once. Multifunctional materials are 

composite materials that either perform multiple structural functions, or combine non-

structural and structural functions [37]. Polymer coated magnetic nanoparticles 

containing fluorescent molecules, tumour-targeting moieties, and chemotherapeutic 

agents have been developed and are able to target specific sites, provide imaging 

contrast enhancement, and treat the tumour simultaneously [38]. By adding additional 

material components that possess unique properties, it could be possible to enhance the 

functionality of DEBs. In the following paragraphs, we introduce some aspects that 

would be beneficial as added components for drug-eluting beads used for TACE 

therapy.  

2.3.1     Visibility/ detectability 

The current method of tracking the location of drug-eluting beads for TACE therapy 

involves infusing a soluble iodinated non-ionic contrast agent, such as the commonly 

used CT contrast agent Lipodiol made from iodinated poppy seed oil, with the drug-

eluting embolization beads. This is done either by injecting beads followed by contrast 

agent [39], or mixing the contrast media with the microbead suspension and injecting 

them at once [40]. Unless another specific endpoint is desired, once reflux is detected, 

that is used as the endpoint for bead infusion [30]. The issues with this are that contrast 

media is rapidly cleared by the body [41], meaning that long-term detection of the 

beads is not possible. Also, loosely mixed contrast media does not necessarily 

demonstrate the presence or location of microbeads [42], and additionally, once the 

blood flow is limited due to embolization, it may be difficult for more contrast agent to 

reach the site. This lack of intraprocedural imaging feedback has been identified as a 

disadvantage of DEB-TACE compared to Lipiodol-based TACE [15,32]. A drug-

eluting bead with inherent radiopaque or magnetic properties would be beneficial in 
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that it would have the ability to be imaged using clinical imaging techniques. This 

could be accomplished during the procedure, providing real-time intra-procedural 

feedback, as well as providing useful information in follow-up imaging. 

A new class of embolic microspheres that are detectable through imaging has been 

recently introduced. It has been noted that the ability to image the distribution of DEBs 

in tissue in real-time would be useful for choosing particle size to further improve 

embolization procedures [33], to help adjust the procedure to specific patients, or to 

provide information for combination therapy such as the optimal position for ablation 

needles based on areas less concentrated with drug or beads [32]. Additionally, imaging 

the final location of DEBs would provide some information in terms of drug 

quantification and localization [32] of the dynamic drug levels in a tumour following 

DEB-TACE [43]. Namur et al. found that drug distribution after DEB-TACE was 

greatest around the beads and existed at 600µm away from the bead edge [44].  

Detectable embolic particles that have recently been studied include modified 

commercial products such as Embozene® Microspheres with barium sulfate and iron 

oxide precipitated into the hydrogel for radiography, CT and magnetic resonance 

imaging (MRI) in porcine kidneys [45]; iron oxide-containing Embosphere® 

Microspheres made of tris-acryl gelatin for use with MRI [33]; Contour® Emboli PVA 

particles modified with gadolinium chelates to the surface for MR imaging [46]; and 

the LC Bead® (similar to the DC bead but without loaded drug) loaded with Lipiodol 

visualized with fluoroscopy and CT [40]. Additionally, chitosan microspheres 

embedded with superparamagnetic iron oxide have been developed for MRI traceable 

embolization [47,48].  

Lee et al. imaged the distribution of iron-oxide containing tris-acryl gelatin 

microspheres after using MR imaging following injection into rabbit liver. Results 

displayed a difference in distribution and location of small embolization microspheres 

compared to larger ones, with the larger ones being undesirably located outside the 

tumour area. This suggests that detectable embolic microspheres could provide useful 

information that would help improve TACE therapy technique [33]. Sharma et al. 
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demonstrated that Lipiodol loaded LC beads could be detected in vivo in swine liver 

and kidney tissue with CT. The visibility was based on the iodine content of the 

Lipiodol-loaded microspheres, the distribution volume after embolization, and the 

imaging method and post-processing image analysis sensitivities. They showed that 

individual beads could be resolved using micro-CT but not clinical CT, and suggested 

that if at least 2-3 beads were packed in an artery, optimal visibility with clinical CT 

could be achieved. Approximately 0.2-0.25mL of beads could be detected with CT and 

approximately 0.4-0.5mL could be detected with fluoroscopy in the final arterial 

destination after embolization of the liver and kidney [40]. 

Following this work, Dreher et al. studied the doxorubicin levels around radiopaque 

DEBs. The LC/DC Beads, made radiopaque by the addition of Lipiodol into the bead, 

were also loaded with Dox and the beads were delivered to normal swine liver and 

kidney and were imaged in vivo with fluoroscopy and CT. It was observed that smaller 

beads (70-150µm compared to 100-300µm in diameter) penetrated the tissue more 

distally, with a more homogeneous distribution, and roughly 2-fold greater drug 

coverage. They also found that transcatheter computed tomography angiography (CTA) 

with liquid iodinated contrast shows different results than the eventual bead location 

using radiopaque beads, demonstrating that using transcatheter CTA with liquid 

contrast is not accurate in approximating the eventual bead location, and radiopaque 

beads would better determine this [32]. 

The development of multimodal embolization particles has also been recognized as a 

desirable goal because it would allow procedural imaging to be achieved using multiple 

clinical imaging techniques. Embolization particles of 40 to 200µm consisting of a long 

polymer with an iodine-containing core and an iron oxide coating were shown to be 

visible under fluoroscopy, CT, and MRI [42]. It is suggested that the combination of 

multiple modalities could provide the quantifiability of CT along with the sensitivity of 

MRI [49], and could be useful for not only intraprocedural imaging, but also follow-up 

examinations [42].  
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It is recommended that follow-up CT or MRI be completed two to four weeks 

following treatment with DEBs to monitor tumour response. If residual tumour is 

detected, further treatment is recommended and typically occurs four to eight weeks 

after the original treatment [30]. This indicates that detection of visible DEBs would be 

easy to incorporate into current practice and could provide beneficial information as to 

the amount and location of existing DEBs.  

2.3.2     Degradability 

The fate of many DEBs following therapy is currently unknown. When the loaded 

chemotherapeutic has been delivered, and treatment is not finished or the tumour 

recurs, further DEB-TACE is often needed. According to Lewis and Dreher, “the 

current materials are considered non-biodegradable which led to early objections to 

DEB therapy since it may not be possible to re-enter the feeding artery once this artery 

had been occluded” [15]. Multiple treatments are often needed [31] and a review of 

studies of HCC transarterial therapy found that the average number of sessions per 

patient was 2.5 ± 1.5 occurring 2 months apart [9]. It has been thought that non-

biodegradable microparticles for TACE therapy should be used for single therapies and 

biodegradable versions should be used when repeated therapy is needed so ensure that 

the artery is not blocked [35]. In spite of this, non-biodegradable DEBs have been used 

clinically and multiple repeat DEB-TACE procedures in the same patient has been 

shown possible [50]. This does not, however, mean that there are no issues with the 

accumulation of DEBs at the tumour site without the ability to degrade, but that there is 

currently no option that properly addresses this. “There is an undercurrent of opinion 

that DEB evolution will eventually move in this biodegradable direction as an essential 

feature” [15]. 

Degradability of the carrier is an important aspect to consider for drug delivery.  

Polymeric microspheres composed of biodegradable material are one of the most 

commonly used drug delivery systems [16]. In terms of microspheres for drug delivery, 

the degradability is not only important because it limits accumulation and potentially 

toxic side effects, but it also alters the release of the drug molecules incorporated or 
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encapsulated within the microsphere. Release from a degradable polymer can follow 

any of the following mechanisms: release from the surface of the microsphere; release 

through the pores of the microsphere; diffusion through the polymer barrier; diffusion 

through a water swollen barrier; and release due to polymer erosion and bulk 

degradation [51]. The two main categories of polymer degradation are surface erosion 

and bulk erosion [52,53]. Drug carrier erosion may be beneficial because it may allow 

for release of drug molecules entrapped in the polymer matrix, resulting in additional or 

prolonged release, and also opens up the potential for delivery of more challenging 

drug molecules; this includes water-insoluble drugs, which cannot otherwise diffuse 

from a DEB, or molecules of high molecular weight [35]. 

Biodegradable polymers can be natural or synthetic, and break down either 

enzymatically or non-enzymatically into biocompatible, non-toxic byproducts [51]. 

Non-enzymatic degradation or dissolution can occur hydrolytically, or through change 

in environmental factors such as pH, temperature, or electric field [17]. Synthetic 

biodegradable polymers include polyorthoesters, polyanhydrides, polyamides, 

polyesters, polyphosphazenes, and natural polymers used for biodegradable drug 

delivery include proteins such as albumin, gelatin, and collagen, or polysaccharides 

such as starch, cellulose, and chitosan [51].  

Poly(vinyl alcohol) is known to be non-biodegradable. (This will be discussed further 

in section 2.5.1). In a review on agents and drugs used for TACE therapy of HCC, 

Giunchedi et al. described the PVA microspheres, and specifically the DC bead, as 

belonging to the non-biodegradable category [35]. In terms of the DC bead, it has been 

reported that small beads may be favourable due to less complete stasis, allowing for 

repeat treatment [31]. Additionally, obstruction of tumour arteries could prevent 

contrast agent perfusion into the tumour, which may inhibit follow-up imaging to detect 

viable tumour [29]. It is reasonable to conclude that degradable DEBs would be 

beneficial because they would allow more effective repeat treatment and also better 

monitoring of tumour progression.  
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2.3.3     Targetability 

Targeting of drug carriers has been identified as an important area of cancer therapy 

and localizing therapeutic agents to a specific area remains a constant challenge of 

chemotherapy. Because most chemotherapeutic agents affect any rapidly dividing cell, 

the unspecific nature can cause significant harm to surrounding tissue. In the case of 

intravenous administration, the drug circulates throughout the body. By directing drug 

carriers to a target organ, delivery has the potential to better treat the tumour tissue 

through the release of the full drug load to the specific site, as well as limiting toxicity 

to other organs or surrounding tissue. Targeting can either be active or passive. In terms 

of microsphere encapsulation of drug molecules, active targeting involves molecular 

interactions between microsphere surface groups and specific receptors on the cells of 

the target tissue. Alternatively, passive targeting occurs based on physical or chemical 

properties of the microsphere, for example size or charge [16]. Loco-regional treatment, 

as mentioned previously, is accomplished with DEBs by the physical localizing of drug 

carriers in close proximity to the target tumour tissue, and size dependent microbead 

accumulation in the vessels of the tumour. This is a form of passive targeting that relies 

on blood flow to carry microbeads to a general location.   

An alternative method of passive targeting is magnetic targeting. Magnetic targeting of 

magnetically responsive particles carrying anticancer agents is a method of selectively 

localizing drug molecules. This approach has been studied since the 1970s with recent 

development of drug loaded ferrogels [54] and magnetic nanoparticles conjugated with 

drug molecules [55-57]. Substantial advancements have been made in this area because 

of the potential to focus drug carriers to very specific locations. This could be achieved 

by dynamically manipulating magnets to focus the magnetic drug carriers [58].  

It has been suggested that magnetic carriers could be used to improve TACE therapy 

[35]. Pouponneau et al. described the need for better targeting of TACE therapy 

particles and four main problems associated with the lack of it: some drug reaches 

systemic circulation causing undesirable cytotoxicity; the drug can attack healthy cells; 

a painful procedure is experienced due to embolization of healthy blood vessels; and 
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damage to the hepatic artery occurs, limiting the ability to effectively perform 

additional treatments. The authors fabricated magnetic iron-cobalt nanoparticles 

encapsulated into poly(D,L-lactic-co-glycolic acid) (PLGA) microparticles that could be 

magnetically steered by an MRI system [59]. An additional method of targeting or 

localizing the DEBs used in TACE therapy could be beneficial in accumulating the 

microbeads at a more specific region within the liver. 

2.3.4     Improved drug loading and release 

It has been suggested that DEBs can pose a problem when there is incomplete killing of 

tumour tissue in combination with hypoxic conditions. This could cause cancerous cells 

to transform into a more malignant phenotype [15]. Work demonstrating that 

embolization-induced hypoxia actually leads to the expression of vascular endothelial 

growth factor and angiogenesis [60] supports the idea that additional therapeutics that 

block angiogenic pathways could be administered along with current therapeutics for 

DEB-TACE [15]. Combination therapy with other anti-cancer agents is also being 

studied and the ability to load multiple drugs into DEBs may prove beneficial [15].  

Moreover, through the ion exchange drug conjugation currently used in some DEBs, a 

limit of drug loading exists. If the loading of the drug molecules into the microbeads 

can be enhanced, and the mechanism of drug release altered and tuned, the release can 

be sustained over a longer period of time. This would be beneficial in providing longer 

treatment without an increase in toxicity or the need for multiple doses of drug loaded 

embolic agents. Additionally, there are constraints on the types of drugs that can be 

loaded into the current DEBs that load and release drug based on ion exchange. Chief 

among these constraints is that the drug molecule must be ionizable [35]. 

A material that has the ability to increase drug loading and also enable the loading of 

multiple therapeutics could prove to be very advantageous for this type of system. In 

section 2.5.2.2, the use of cellulose nanocrystals, as an alternative approach to drug 

loading that is able to fulfill these requirements is described. Additionally, the control 

of drug release kinetics could be accomplished by means of a tunable polymer matrix.  



www.manaraa.com

	
  
	
  

	
  

16 

This is described in section 2.5.1 with the use of a physical crosslinking method for a 

poly(vinyl alcohol) drug encapsulation matrix with variable diffusion properties. 

2.4 Design Criteria 

Based on recent developments in the field of drug delivery, we suggest the addition of 

the following criteria to the list of ideal characteristics of a drug carrying embolization 

material: 

1. Visible/detectable with the use of clinical imaging techniques 

2. Degradable following therapeutic treatment 

3. Targetable (ie. with application of an external magnetic field) 

4. Alternative drug loading and release mechanism 

Other aspects that are considered important criteria for the design of new drug-eluting 

beads include the biocompatibility of all materials and the ability to achieve an ideal 

microbead size. In the next sections, the materials selected as matrix and the nano-

elements to be incorporated will be discussed.  

2.5 Materials  

2.5.1     Poly(vinyl alcohol) as delivery matrix 

Poly(vinyl alcohol) is a polymer that can be transformed into a hydrogel with unique 

properties that make it a desirable candidate for use in many biomedical applications. 

Hydrogels are three-dimensional networks of polymer chains that maintain a high water 

content. PVA is synthesized through the production of polyvinyl acetate via free radical 

polymerization, followed by a hydrolysis reaction [61].  This produces a carbon chain 

containing secondary alcohol groups, which allow for significant hydrogen bonding in 

the presence of water, forming a hydrogel with high water content. In order to stabilize 

the hydrogel, several crosslinking techniques are used. The use of chemical 

crosslinking agents is quite common. Examples of these agents are formaldehyde and 

gluteraldehyde [61,62]. Other methods of crosslinking include γ-irradiation, electron 

beam treatment, and physical crosslinking [63]. Physical crosslinking has been studied 
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extensively, especially for materials designed for medical device applications because 

of its unique ability to control mechanical and diffusion properties of the hydrogel 

without adding any additional harmful chemicals [63]. 

As mentioned in section 2.2, the DC bead is stabilized using chemical crosslinking. The 

use of chemical crosslinking techniques has been noted as only being useful if toxic 

reagents are completely removed following fabrication and before in vivo use [17]. 

However, this is often not possible as removal would result in instability or premature 

release of the drug. Physical crosslinking is a method of crosslinking that uses low 

temperature thermal cycling (LTTC) to induce physical changes within the structure of 

the hydrogel by altering hydrogen bonding interactions. The material is exposed to a 

low temperature, usually between -5 and -20°C, and then allowed to thaw to a higher 

temperature, typically room temperature. These freeze-thaw cycles (FTCs), which can 

be broken into several stages, result in phase separation, which forces the polymer 

chains to form domains of structured crystallites. The resulting structure of the PVA 

hydrogel is a matrix comprised of regions of crystallites – high polymer concentration, 

and pores – low polymer concentration [64-66]. The end product is a solid gel, also 

known as PVA cryogel [63]. Techniques including transmission electron microscopy 

(TEM) [66], small angle X-ray scattering [66], and small angle and ultrasmall angel 

neutron scattering [65,67] have been used to determine the micro and nanostructure of 

PVA cryogels.   

Several parameters are important in controlling the PVA hydrogel properties. 

Molecular weight (MW) and PVA solution concentration are important in terms of the 

resulting hydrogel structure [62,68-71]. An increase in molecular weight, and therefore 

an increase in polymer chain length, results in an increase in the number and size of 

crystalline regions [72]. An increase in the PVA concentration has been shown to result 

in more stable gels with higher degrees of crystallinity and higher degrees of 

crosslinking [72]. It has also been shown that higher PVA concentrations produce a 

more rigid cryogel structure due to the increase in intermolecular hydrogel bonding 

from the presence of more hydroxyl groups [73].   
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In terms of processing, the number of FTCs, the upper and lower temperature limits, 

and the rate of freezing and thawing can also be controlled to form different products 

[62]. Through these methods, modifications can be easily made to control the diffusion 

properties, which is important for drug delivery applications. The number of FTCs has 

a significant effect on the structure and properties. It affects the dissolution of PVA 

cryogels [74] as well as the mechanical properties, with an increase in stiffness 

correlating to an increase in the number of FTCs [62], up to a maximum number of six 

FTCs [75,76]. 

In terms of diffusion, which is highly relevant for drug delivery applications, PVA 

cryogels have good diffusion characteristics that are highly tunable. The structure 

comprised of approximately 3nm crystalline regions and 19nm amorphous regions [65], 

which permit diffusion of certain molecules from the PVA matrix. Diffusion of solutes 

is related to mesh size, which is related to crystallinity, and a size exclusion 

phenomenon occurs [77]. The water diffusion coefficient can be adjusted as a function 

of number of FTCs [78], with a decrease in diffusion resulting from an increase of 

number of thermal cycles. This demonstrates the ability to tune the diffusion 

characteristics to achieve optimal delivery of a particular molecule for a specific 

application. These results are consistent with a study performed by our group. Using 

bovine serum albumin (BSA) inside of a PVA matrix to study the effect of processing 

parameters on protein release, it was found that the diffusion coefficients can be 

modified over a 20-fold range with an decrease in release rate resulting from an 

increase in the number of FTCs or an increase in the concentration of PVA [63]. The 

use of chemically crosslinked PVA in current DEBs limits the ability to control 

diffusion properties the way they can be controlled using physical crosslinking through 

low temperature thermal cycling. This highlights a benefit of crosslinking the PVA 

through freeze-thaw (FT) cycling. 

Physically crosslinked PVA has been studied quite extensively as a biomaterial for use 

in drug delivery. A common method of production of these PVA microparticles is 

through the use of an emulsion technique. Ficek and Peppas prepared microparticles of 

PVA for controlled delivery of proteins, modeled with BSA, through an emulsion 
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technique and subsequent exposure to FT cycling. This novel work did not require the 

use of a crosslinking agent because of the stabilization of the particles using freeze-

thaw cycling [79]. Many other studies were undertaken using PVA as the drug carrier 

for protein [80,81] or DNA encapsulation [82]. Work using a composite material with 

PVA, such as chitosan or cellulose, has also been completed for drug delivery purposes 

[83,84]. 

Poly(vinyl alcohol) treated through low temperature thermal cycling is known to be 

biostable and nondegradable, with very low dissolution. For many applications in 

medical devices, PVA hydrogels produced through physical crosslinking are 

advantageous in this way because they can remain stable in the body over time. In 

section 2.3.2 however, the degradability of microspheres was discussed in terms of its 

importance for drug delivery purposes. It is important to look at the dissolution 

potential of PVA hydrogels and how this can be enhanced in delivery systems.   

Lozinsky et al. found initial swelling followed by shrinkage of PVA hydrogel beads 

prepared through one FTC and subjected to water flow in a packed bead column for 

two weeks. The overall result after two weeks was no net change in mass [85]. Hassan 

et al. modeled the dissolution of crystallites in PVA films prepared by FT cycling and 

showed that crystallite size was important for dissolution and smaller crystallites 

dissolved quickly while those with a lamellar thickness greater than 215Å remained 

stable over time [86]. Separately, they reported that PVA dissolution occurred for PVA 

chains that were not incorporated into the crystalline structure formed during FT 

cycling. It was found that the dissolving PVA was not from the crystalline regions and 

polymer dissolution decreased as the number of FTCs increased. 15% PVA films of 

low molecular weight (MW 35,740) were placed in 37°C water and a fractional 

dissolution was observed to plateau at roughly 6 days. Samples subjected to three, five 

and seven FTCs had dissolved fraction of approximately 0.48, 0.39 and 0.31 

respectively. After six days, the polymer dissolution plateaued and the hydrogel was 

stable, with some changes in swelling [72]. A study producing a multilaminate PVA 

device for protein delivery also showed that an increase in the number of FTCs 

decreased the dissolution of PVA. A fractional dissolution for 15% PVA samples (MW 



www.manaraa.com

	
  
	
  

	
  

20 

64,000) in water at 37°C over close to 100 hours showed a dissolved fraction of 

approximately 0.13 and 0.05 for samples prepared with three and five FTCs 

respectively [74].  

Wong determined that after seven days in water or phosphate buffer saline (PBS), PVA 

samples produced with six FTCs decreased slightly in mass. 10% PVA samples (MW 

146,000-186,000) decreased to approximately a 0.88 and 0.83 fraction of their initial 

mass in water and PBS respectively. It was reported that increases in PVA 

concentration and the addition of nanofillers to the hydrogel decreased the mass loss 

[87]. Willcox et al. found that aging increased the crystallinity of the hydrogel and 

during storage at room temperature, sealed physically crosslinked PVA hydrogel 

samples (19wt% PVA) lost between 8% of their mass (crosslinked using one FTC) or 

12% of their mass (12 FTCs) through the expelling of water to the surface of the 

hydrogel over one year [66]. 

Finally, the presence of salts has an effect on PVA hydrogel dissolution. Patachia et al. 

reported mass loss of roughly 11% for PVA samples in 1M salt solutions with an 

increase in mass loss occurring for higher electrolyte concentrations. Mass loss occurs 

through the loss of water and was shown to reach equilibrium after roughly 25 hours in 

salt solution [88]. 

Although biostability is important for many applications such as articular cartilage 

replacement [89], or cardiovascular tissue replacement [62], it provides an interesting 

problem for drug delivery applications as undesirable accumulation of the microspheres 

could occur. This poses several problems, including potential toxicity. As well, it is 

expected that for use in TACE therapy, accumulation in the arteries close to the tumour, 

might actually inhibit further TACE administration, or would cause subsequent 

infusion of microbeads to aggregate at distances further from the site of the tumour, 

resulting in lower doses of chemotherapeutic agents to tumour cells and unwanted 

administration of these drugs to surrounding tissue. It is important to look at how 

degradability of DEBs can potentially be achieved, and specifically if we can 
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accomplish this using PVA treated through LTTC because of the advantages this 

material possesses for the application that we have presented.   

2.5.2     Incorporated nano-elements  

In this section, the nanoparticles that are incorporated into the poly(vinyl alcohol) 

matrix will be discussed in terms of selection, properties, fabrication, and purpose in 

the proposed drug delivery embolization system.  

2.5.2.1     Iron oxide nanoparticles 

Inorganic nanoparticles can be an excellent addition to materials for biomedical 

applications because they provide the chemical and functional properties of the 

inorganic component, while possessing the physical properties of the bulk material 

[90]. Iron oxide nanoparticles have many properties that make them extremely useful in 

biomedical applications such as cancer therapy and specifically, drug delivery. 

Magnetite, Fe3O4, has an inverse spinel structure with oxygen forming a face-centered 

cubic close packed arrangement. It is a specific form of iron oxide that is particularly 

useful in biomedical applications because magnetite particles are biocompatible and 

non-toxic, breaking down to eventually form blood hemoglobin [91,92]. Magnetite 

nanoparticles can also have superparamagnetic properties, meaning they respond to an 

external magnetic field, but do not hold magnetism once the magnetic field is removed.  

The magnetic properties of iron oxide nanoparticles have made it useful for magnetic 

targeting for localized or targeted therapy, as well as for enhancing contrast in magnetic 

resonance imaging (MRI) [91]. They can be used as an MR contrast agent as they have 

a strong impact on the T1 and T2 relaxation. T2 relaxation depends on the size and 

coating of the particles [93]. They have also been studied for use as contrast agents for 

X-ray and CT imaging [94]. Finally, an additional use for biomedical applications is 

that they have also demonstrated the ability to induce hyperthermia in the presence of a 

magnetic field, which can enhance tumour killing [91].  
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Magnetite nanoparticles are easily produced in a co-precipitation method of ferric and 

ferrous aqueous salt solutions in a molar ratio of 2:1, in the presence of hydroxide ions 

[91,92,94].  The following is the overall reaction: 

Fe2+ + 2Fe3+ + 8OH- à Fe3O4 + 4H2O                   (1) 

The coating of these nanoparticles with a biocompatible polymer, such as poly(vinyl 

alcohol), has been shown to be useful in several ways. First of all, without coating, iron 

oxide particles tend to agglomerate to form clusters [91]. Polymer coating can achieve 

particle monodispersity and stable dispersions [95]. Finally, magnetite-loaded 

polymeric particles are shown to have low cytotoxicity [96]. The co-precipitation of 

aqueous ferric and ferrous iron salts in the presence of PVA was demonstrated by Zhou 

et al. to fabricate iron oxide nanoparticle-containing magnetic PVA gel beads for 

potential use as a drug carrier. The beads had excellent superparamagnetic property and 

uniform size of 2mm diameter. The precipitation of the iron oxide nanoparticles was 

described as forming a certain level of crosslinking within a PVA matrix [97].  

Work on the interaction of PVA and iron oxide has been previously shown. Using 

atomic force microscopy, Uner et al. demonstrated that a decrease in hydroxyl content 

(increase in degree of acetylation) resulted in a significant drop in the adhesion force 

between PVA and the iron oxide. Infrared spectroscopy data supported the notion that 

increase in degree of acetylation resulted in increased intra and intermolecular 

hydrogen bonding, leaving hydroxyl groups less available for adhesion with the iron 

oxide surface [98]. Furthermore, Gonzalez et al. completed work on PVA ferrogels 

produced through co-precipitation of iron salts in PVA, followed by freeze-thaw 

cycling. They explained that the high affinity of PVA hydroxyl groups to oxide 

surfaces led to adsorption of PVA onto iron oxide surfaces. A decrease in degree of 

crystallinity and melting temperature was found in PVA ferrogels (containing 

magnetite nanoparticles) compared to PVA hydrogels. The authors stated that the 

decrease in crystallinity suggests that the formation of smaller crystalline regions as a 

result of the nanoparticles interfering with the ability of PVA chains to form 

crystallites. Additionally, a decrease in degree of swelling was found in PVA ferrogels. 



www.manaraa.com

	
  
	
  

	
  

23 

To explain this, they proposed that the total number of crystallites may actually be 

increased with the presence of iron oxide nanoparticles, as the nanoparticles may be 

nucleation centers creating low-mobility regions. These low-mobility regions are 

essentially crosslinking points, and would therefore decrease swelling [99]. 

Alternatively, later work by Gonzalez et al. on PVA ferrogels prepared through initial 

freeze-thaw cycling followed by iron salt loading and subsequent co-precipitation into 

iron oxide showed an increase in degree of crystallinity and melting temperature. This 

was said to be a result of an additional postcrystallization process from a second drying 

step, as well as the presence of iron oxide nanoparticles creating a nucleating effect, 

thus producing larger crystals [100].  

The difference in the order of iron oxide precipitation and freeze-thaw cycling may 

result in a slight difference in the material structure, but the notion that iron oxide 

nanoparticles form crosslinks in PVA is consistent. This begs the question of whether 

the subsequent removal of iron oxide nanoparticles from the PVA matrix would remove 

crosslinks, and therefore allow dissolution of the material. This could be regarded as a 

form of ‘degradable’ PVA iron oxide hydrogel. It will be further discussed in chapter 4. 

Iron oxide has recently been incorporated into particles designed for embolization in 

order to enhance contrast for various imaging modalities. Iron oxide incorporated into 

tris-acryl microspheres [33,101] and chitosan microspheres [47,48,102] have been 

produced for use as embolization particles detectable using MRI. With the use of CT, 

iron oxide nanoparticle concentration of at least two orders of magnitude greater can be 

detected than with 1.5 T MR. Concentrations of 1-40 mg Fe/mL was detected with CT 

where 0.01-0.4 mg Fe/mL was detected with MRI. This has been suggested to be more 

useful for specific applications, including magnetic hyperthermia where concentrations 

of 1-10 mg Fe/mL are often used [103]. Based on the quantity of DEBs typically used 

in DEB-TACE therapy, and the fact that they accumulate together in the vasculature of 

tumour regions, it is worth investigating the use of CT to image iron-oxide containing 

beads fabricated for this application.  
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2.5.2.2     Bacterial cellulose nanocrystals 

Bacterial cellulose (BC) is a biocompatible and non-toxic carbohydrate polymer [104]. 

It has been studied widely for use in biomedical applications such as wound dressings 

[105] and reinforcement material for biomedical implants such as cardiovascular tissue 

[76,106,107]. It is an ideal candidate due to its availability, biocompatibility, high 

specific strength and modulus, hydrophilicity, high water holding capacity, and ability 

to form a porous three-dimensional network. Furthermore, in its surface functionalized 

form, it is an excellent material for drug conjugation in biomedical applications [108]. 

Cellulose is the most abundant naturally occurring polymer [109], with sources 

including plant, algae, fungi and bacteria. Bacterial cellulose, synthesized by the 

bacterium Gluconacetobacter xylinus bacteria, is advantageous for biomedical 

applications because of its purity and high degree of crystallinity [110]. It is a high 

molecular weight polymer composed of repeating units of two anhydroglucose units 

with a reducing, and nonreducing end.  Hydroxyl groups present in the equatorial ring 

positions provide the high hydrophilicity and allow for functionalization [111].  

It has been demonstrated that through several different reaction routes, BC can be 

broken down quite effectively into cellulose nanocyrstals (CNC).  This occurs as a 

result of chemical reactions which hydrolyze the disordered (amorphous) regions of the 

BC fibre, leaving the more ordered crystalline regions intact because they are better 

able to resist hydrolysis [112]. The end product of these reactions is highly crystalline 

cellulose in the nanoscale range. CNC has a very high surface to mass ratio [113], 

which makes it a particularly useful carrier of drug molecules in high loading.   

Many studies have reported methods of producing CNC from BC. These include  

enzymatic hydrolysis, harsh acid hydrolysis, and ammonium persulfate oxidation.  

Functionalization of the primary alcohol group on the BC or CNC has been 

demonstrated through many reactions, producing both anionic and cationic surface 

groups [114-116], with different types of conjugations of therapeutics being 

demonstrated [117-119]. The well-established 2,2,6,6-tetramethylpiperidine-1-oxyl 

(TEMPO) mediated oxidation reactions [120] introduces carboxylic acid groups to the 
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surface, creating a negative surface charge, which allows positively charged drug 

molecules to be loaded [121]. Alternatively, reactions such as the use of 

epichlorohydrin and ammonium hydroxide [114], choline-based ionic liquid analogue 

[122] or epoxypropyltrimethyammonium chloride [123] introduce cationic surface 

charges to the cellulose fibres, providing means for the loading of negatively charged 

drug molecules.   

Because numerous chemical reactions can be performed on the surface to allow 

different forms of drug conjugation, drug loading and release chemistry can be tailored 

to the needs of a specific application. This makes it a very versatile material for a wide 

range of drug molecules. The high potential drug loading, the ability to load different 

types of drug molecules, and the ability to tailor drug release make CNC a good 

candidate for improved drug loading and release in DEBs.  

Of interest is the method using hydrogen peroxide to break the BC fibres down into 

CNC while also oxidizing the surface to produce carboxylic acid groups [124]. This is a 

facile method that provides a high surface area and high carboxyl functional group 

content for loading of positively charged drug molecules, such as doxorubicin.  

2.6 Proposed system 

The system this thesis covers is a microbead comprised of a poly(vinyl alcohol) matrix, 

loaded with iron oxide nanoparticles and drug-loaded cellulose nanocrystals. This 

system, illustrated below in Figure 2.3, is a “nano-on-micro” drug delivery system. The 

grey sphere illustrates the PVA matrix crosslinked through low temperature thermal 

cycling process in conjunction with iron oxide precipitation. The black dots represent 

the iron oxide nanoparticles distributed throughout the PVA matrix. The black curved 

lines illustrate the incorporation of CNC and the red ovals represent the potential to 

load therapeutic molecules onto CNC within the microbead. 
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Figure 2.3 Proposed multifunctional nano-on-micro system 

The system is hypothesized to be beneficial for use as a drug delivery embolization 

particle in TACE therapy based on the following reasons: the potential drug loading 

and release capabilities due to the presence of functionalized CNC; the ability to 

visualize it using clinical imaging techniques as a result of iron oxide nanoparticle 

incorporation; the potential for magnetic targeting to a specific location making use of 

the magnetic properties of iron oxide; and the potential for elimination due to 

dissolution of the polymer matrix resulting from the degradation of iron oxide 

nanoparticles.   

2.7 System assembly 

2.7.1     Microbead fabrication 

This portion of the literature review section covers the topic of microbead production, 

as the fabrication of our microbead system is a significant part of the work described in 

this thesis.  

Polymer microspheres or microparticles can be fabricated using many different 

techniques. These include interfacial polymerization methods such as suspension 

polymerization, emulsion polymerization and dispersion polymerization; emulsion-

solvent extraction/evaporation; extrusion methods; photolithographic and 

micromolding methods; and spray drying techniques [16,125]. There are, however, 

downsides to each of these techniques, with the main problem being difficulty in size 
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control resulting in particle polydispersity. This has led us to an alternative approach – 

the use of microfluidic technology. 

The ability to control bead size is of high importance. Not only are specific bead 

diameters more advantageous for the application described in this work, but is has also 

been suggested that further work should be done to tailor the DEB size to the arterial 

anatomy of the tumour site [15]. This requires a production method with a great degree 

of control over microbead size. The desirable size to be fabricated for this application is 

roughly 100-200µm in diameter. This range of beads have been fabricated using 

numerous microfluidic techniques and with various materials [126-128]. 

The use of microfluidics to form emulsions has been explored to produce complex and 

highly monodisperse particles. Particles of various structures, morphologies, and sizes 

ranging from nanometers to hundreds of micrometers can be fabricated [126]. 

Microfluidic devices consist of microchannels, usually around 10-100µm [129-131], 

through which, in many cases, immiscible phases flow and interact. At the junction 

between these channels, droplets of one phase are formed. This is called the dispersed 

phase, with the other liquid being the continuous phase. By controlling parameters such 

as flow rate, the size of the dispersed phase droplets can be modified [131-133].  

Common microfluidic systems are either composed of glass capillary tubing, or 

microchannels etched into a polymer such as poly(dimethyldisiloxane) (PDMS).   

Channels can be set up into various configurations including cross-flow, co-flow or 

flow-focusing configurations in which the continuous and dispersed phases either flow 

alongside or against each other [134]. Other considerations in the design of a 

microfluidic system include the placement and location of channels, the interactions of 

the fluids with the wall, the size and shape of the desired particles, as well as the 

activity of the therapeutic molecule [131,133]. 

This approach will be used for the production of our multifunctional nano-on-micro 

system and will be described in detail in the following sections.  
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2.7.2     Drug loading and release 

The incorporation of CNC within the microbead provides a good route for drug 

conjugation. CNC can be produced through hydrolysis, with oxidation of the alcohol 

groups of the cellulose surface occurring. At the proper conditions, oxidized cellulose 

has been shown to be able to load peptides or drugs containing a positive charge. Spaic 

demonstrated the loading of benzylamine, a model for doxorubicin, to the BC fibres 

[121].  

With the proper investigation and analysis of CNC functionalization, we can achieve 

loading of drugs like doxorubicin onto the fibres. Dox contains a primary amine group, 

which when protonated, will conjugate to deproponated carboxylic acid groups of the 

CNC.  

2.8 Conceptual application 

The conceptual application of this system follows a similar procedure to the one 

currently used with DEBs. The therapeutic molecule, doxorubicin, would be loaded 

into the prepared microbeads. Microbeads would then be delivered by catheter into the 

tumour site. Visualization of the particles could be completed in real-time as well as 

following therapy. Drug release would occur and the microbead matrix would 

disassemble and be cleared from site, to allow repeat treatment.  
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3 CHAPTER 3 – Multifunctional Microbeads 

3.1 Introduction 

This chapter describes the design and fabrication of a microfluidic device for the 

production of microbeads, followed by microbead fabrication and characterization. A 

flow-focusing configuration was selected for the microfluidic device, optimization of 

conditions used for microfluidic microbead production was performed, and microbeads 

composed of PVA, iron oxide nanoparticles, and CNC were produced. Microbead 

characterization was undertaken to determine size, structure, and composition. In this 

work, we also briefly investigate the magnetic properties and visualization capabilities 

of the microbeads produced.  

3.2 Materials and methods 

All chemicals used were ACS reagent grade and purchased from Sigma-Aldrich. 

Distilled water was used for all experiments. Bacterial cellulose was synthesized in the 

laboratory according to the procedure outlined in Appendix I. Bacterial cellulose 

samples were converted into CNC using a hydrogen peroxide hydrolysis reaction 

procedure developed by another member in our research group and were provided to 

me for implementation in my work. CNC with a width of approximately 20nm and 

length ranging between 100 and 2000nm were used. 

3.2.1 Solution preparation 

Four different solution compositions have been used throughout this study to produce 

microbeads, and are outlined in Table 3.1. 
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Table 3.1 Dispersed phase solution composition 

Solution Identification Composition 

1 Low iron PVA 5wt% PVA + 1wt% FeCl3 + 0.6wt% 
FeCl2•4H20wt% in water 

2 High iron PVA 5wt% PVA + 3.1wt% FeCl3 + 1.9wt% 
FeCl2•4H20wt% in water 

3 High iron PVA CNC 5wt% PVA + 3.1wt% FeCl3 + 1.9wt% 
FeCl2•4H20wt%+ 1wt% CNC in water 

4 High iron PVA CNC-10 5wt% PVA + 3.1wt% FeCl3 + 1.9wt% 
FeCl2•4H20wt%+ 10wt% CNC in water 

To produce these solutions, poly(vinyl alcohol), MW 146,000-186,000, 99+% 

hydrolyzed, was dissolved into a quantity of water making up 80wt% of the total final 

solution. This was heated to 90°C for approximately 3 hours, or until complete 

dissolution. Separately, iron (III) chloride (FeCl3) and iron (II) chloride tetrahydrate 

(FeCl2�4H20) (in a 2:1 molar ratio of Fe3+ to Fe2+) were weighed out and added to water 

(comprising the remaining water quantity required for final solution composition 

outlined in Table 3.1). This was mixed with a magnetic stirrer for several hours. The 

PVA solution, after cooling, was added to the iron chlorides solution and mixed with 

magnetic stirring. The final solution was filtered through a 5µm filter (Acrodisc syringe 

filter with Versapor Membranes) to ensure any suspended impurities were removed.  

For solutions 3 and 4 in Table 3.1, cellulose nanocrystals (CNC) were incorporated. To 

do this, wet CNC was weighed out to the desired amount and added to the prepared 

solution of PVA and iron chlorides in water. The resulting solution was sonicated with 

an ultrasonic probe (Q Sonica Sonicator ultrasonic processor) for 1 minute at 120W.  

The solution was mixed with a magnetic stirrer prior to use.   

The solution compositions that were determined to be best were the high iron PVA 

solution (Table 3.1 solution 2) and the high iron PVA CNC solution (Table 3.1 solution 

3). These were used as the microbead compositions for the following experiments. The 

exception to this are those used for scanning electron microscopy (SEM) images, 

energy dispersive X-ray spectroscopy (EDX), and part of the CT experiment, which 
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were performed on microbeads fabricated using the low iron PVA solution (Table 3.1 

solution 1). 

3.2.2 Microchannel device fabrication 

The design and fabrication of a custom-designed microchannel device was necessary 

for microbead production. Microchannels were milled out of poly(methyl methacrylate) 

(PMMA), assembled with another slab of PMMA and connected with screws. 0.038” 

outer diameter tubing (Intramedic polyethylene tubing, BD) was connected to the outlet 

hole. 20 gauge stainless steel needles (Hamilton Company) were connected to the 

inlets, and attached to syringes using 0.125” outer diameter silicone tubing (Cole 

Parmer) and standard luer lock (Cadence Science).  A 10mL syringe was filled with the 

continuous (oil) phase solution and a 1mL syringe was filled with the dispersed (PVA 

iron) phase solution. These syringes were loaded onto micropumps (NE-1000, New Era 

Pump Systems Inc.) and the flow rates controlled. A microchannel device and the entire 

experimental set up is shown in Figure 3.1. Further details of the microchannel devices 

and the final design choice used for microbead production is described in section 3.3. 

	
  

Figure 3.1 A) Custom-designed microchannel device. B) Microchannel production 
experimental set up. 

3.2.3 Microbead production 

The channel and system was set up as shown in Figure 3.1. The solutions listed in 

Table 3.1 were used to produce microbeads through the custom-designed microchannel 

device. The continuous and dispersed phases flowed through the device to form 

A B 

Inlet 
needles 

Outlet 
tubing 
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dispersed phase solution drops. At the outlet, they fell into a sodium hydroxide (NaOH) 

solution whereby the PVA-containing dispersed phase solution droplet solidified, 

forming microbeads. Images of the beads flowing through the microchannel device 

were taken using a high-speed camera (Redlake MotionScope M with frame rate up to 

1000frames/sec). Solution flow was maintained until steady state was reached (~5min) 

before sample collection. The beads were further washed with 50v/v% ethanol in water 

several times. These samples were then subjected to one FTC. This was completed 

either in a -20°C freezer overnight followed by thawing to room temperature or in a 

water bath with controlled temperature (0.1°C/min to -20°C, held for one hour at            

-20°C, 0.1°C/min to 20°C). 

3.2.4 Optical microscopy 

Images were taken for characterization and size analysis of the microbeads using 

optical microscopy (Olympus BX60). Images were taken with a OMRX A35100U 

camera attachment to the microscope and the area of the beads were measured using 

Image J software particle analyzer function for over 100 samples. This data was then 

converted into an equivalent spherical diameter. Statistical analysis was performed on 

the mean equivalent spherical diameters using an unpaired t test, and a p-value of         

< 0.05 was considered significant (GraphPad Prism). 

3.2.5 Scanning electron microscopy 

SEM was performed on the microbeads to characterize the structure and morphology of 

the surface. Microbeads beads were dehydrated through to 100% ethanol by 

incrementally increasing ethanol concentration. Critical point drying (Samdri PVT-3B) 

was performed on the microbeads suspended on filter paper. Microbeads were loaded 

onto a p type silicon wafer with 0-10 Ohm-cm resistivity and an orientation of 100 

(University Wafers), and subsequently coated with osmium (OPC-60A Osmium Plasma 

Coater). Images were taken with a scanning electron microscope (LEO (Zeiss) 1540XB 

FIB/SEM).  
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3.2.6 Energy dispersive X-ray spectroscopy 

EDX is a technique used for elemental analysis of a given sample. EDX (LEO (Zeiss) 

1540XB FIB/SEM) was performed on the samples prepared for SEM described in 

section 3.2.5.  

3.2.7 Transmission electron microscopy 

To characterize the internal composition of the microbeads, transmission electron 

microscopy (TEM) was performed. Beads fabricated using the high iron PVA solution 

(Table 3.1 solution 2) were dehydrated in acetone and then embedded in an Epon-

Alardite epoxy resin (3.5mL Araldite 502, 4.5mL Epon 812, 18mL DDSA, 0.67mL 

DMP). This was completed by the submergence of beads in incrementally increasing 

concentrations of acetone, acetone and epoxy resin, and finally, kept overnight in 100% 

epoxy. Following this, beads in epoxy were heated in an oven at 60°C overnight in 

plastic molds. Samples were ultramicrotomed (Reichert-Jung Ultracut E) with an 

ultrafine diamond knife to a thickness of 70nm and placed on Formvar carbon-coated 

100 mesh copper grids (Electron Microscopy Specialists). The samples were examined 

under TEM using a Philips TEM (CM-10.s). Iron oxide nanoparticle size was measured 

using Image J software. Based on the images selected for measurement, an intensity 

threshold between 0 and 80 was selected to differentiate the particles from the 

background, and the particle analyzer function was then used to measure particle area. 

This was converted into an equivalent spherical diameter. (See Appendix IV for images 

used in this measurement). 

3.2.8 X-ray diffraction 

To identify the crystalline material present in the microbeads, X-ray diffraction (XRD) 

was performed. Beads fabricated with the high iron PVA CNC solution (Table 3.1 

solution 3) were dried at 60°C overnight and placed on a glass slide with double sided 

tape. XRD analysis was performed using a Rigaku-Rotaflex Diffractometer (RU-

200BH) with a Co-kα radiation (λ =1.79 Å) at 30kV and 44mA. Spectra with a 2θ 

diffraction angle were scanned from 0° to 82° with a 0.2° step size. A background scan 
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was performed on the blank slide with tape, and the relative peaks were subtracted from 

the sample peaks. Spectra were plotted for a 2θ of 10° to 82°.  

3.2.9 Clinical computed tomography 

Computed tomography of microbead samples was performed in order to determine the 

visibility of the multifunctional microbeads under clinical imaging techniques.  

Microbeads produced using the low iron PVA solution (Table 3.1 solution 1) and the 

high iron PVA CNC solutions (Table 3.1 solution 3) were used. Additionally, 5wt% 

PVA solution processed as a film using LTTC (see section 4.2.2 for preparation 

procedure) was imaged as a control. These control films were homogenized 

(Brinkmann Homogenizer Polytron PT 10/35) on high speed to produce small pieces.  

Various quantities of microbeads and equivalent quantities of plain PVA samples were 

weighed out and suspended in phosphate buffer saline (PBS) solution and contained 

within 1.5mL microcentrifuge tubes. These tubes were held in a tube rack and placed 

within the scanner. Samples were imaged using clinical CT (GE Healthcare Discovery 

VCT). Axial scans were completed with a rotation time of 0.4 seconds using a bone 

reconstruction scan type. Conditions were set to 80 kV, 300 mA, and a slice thickness 

of 0.625mm. Two different window width (W) (Hounsfield units) and level (L) 

(Hounsfield number) settings were used to view the images: W/L of 426/183 and 

650/100.  

3.2.10 Acid/base titration of cellulose nanocrystals 

To measure the carboxyl content on the CNC, an acid/base titration was performed. 

0.1g wet CNC was weighed out and dispersed into 10mL 1mM hydrochloric acid (HCl) 

solution using an ultrasonic probe (Q Sonica Sonicater ultrasonic processor, Newton, 

CT) for 30 seconds at 120W. 1mM NaOH was titrated against the solution containing 

CNC and the curve was plotted. This was repeated in triplicate. The same procedure 

was performed on a sample of the BC used as the reactant for the conversion to CNC. 

Additional washes with dilute acid and water were performed on the BC sample before 

titration to ensure any residual NaOH from BC harvest and separation was neutralized 
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and removed. The carboxyl content of the CNC was calculated using Equation 2. The 

wet CNC contained 99% water and therefore, an equivalent dry mass of 1% of the wet 

mass was used. Finally, the pKa of the CNC was determined based on pH at the half-

equivalence point according to the Henderson-Hasselbalch equation. For comparison, 

these results were plotted against a titration curve of 1mM NaOH against 1mM HCl.  

𝐶𝑎𝑟𝑏𝑜𝑥𝑦𝑙  𝑐𝑜𝑛𝑡𝑒𝑛𝑡   𝑚𝑚𝑜𝑙/𝑔𝐶𝑁𝐶 = 𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  1𝑚𝑀  𝑁𝑎𝑂𝐻  𝑡𝑜  𝑛𝑒𝑢𝑡𝑟𝑎𝑙𝑖𝑧𝑒  (𝐶𝑁𝐶−𝐵𝐶)
𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡  𝑑𝑟𝑦  𝑚𝑎𝑠𝑠  𝑜𝑓𝐶𝑁𝐶       (2) 

3.3 Results and Discussions 

3.3.1 Microchannel device design and microbead production 

The overall design of the microbead production method is shown below in Figure 3.2. 

It consists of a continuous phase (oil phase) flowing against a dispersed phase (PVA 

iron phase) and meeting at a junction, which is the site of the formation of microbeads 

comprised of the dispersed phase solution. The microbeads are subsequently dropped 

into a high pH (sodium hydroxide) solution where iron oxide precipitation occurs 

within the PVA matrix. Following this, thermal cycling is performed to induce physical 

crosslinking in the PVA.  

 

Figure 3.2 Production process for PVA iron oxide CNC microbeads. 

Several designs were tested for the microchannel system used for production of 100-

200µm diameter PVA iron oxide CNC microbeads. Initial designs using a T-junction 

microchannel configuration were used and results were unsatisfactory (details are 

collected in Appendix III). The final design selected made use of a flow-focusing 
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microchannel configuration (Figure 3.3). Dispersed phase (PVA iron phase) flow is 

directed through a channel by the continuous phase (oil phase) flowing from two 

directions. The two phases are forced through a small opening, causing a viscous stress 

action of the continuous phase on the dispersed phase [1]. This results in the pinch-off 

of the dispersed phase, forming droplets. Compared to a T-junction microchannel 

configuration, we found that the flow-focusing system minimized the interaction 

between the dispersed phase and the channel wall, thus preventing the formation of 

slugs – elongated droplets [2] – of the dispersed phase in the channel. Adherence of the 

dispersed phase to the wall inhibits bead production, and is a common issue [3]. The 

use of a flow-focusing system addresses this issue, with another option being the 

coating of channel walls to make it immiscible with the dispersed phase (ie. 

hydrophobic coating for an aqueous dispersed phase) [3].  

	
  

Figure 3.3 Flow focusing microchannel design. Red channel width is 200µm. Blue 

channels have a width of 500µm with a narrow section of 127µm. 

Optimization of several key parameters was undertaken. Table 3.2 outlines the 

parameters and conditions that were varied. Under optimized conditions, the droplets of 

dispersed phase solution formed at the junction of the two phases was smaller than the 

width of the channel. This is consistent with reports that flow-focusing systems are 

advantageous in their ability to produce microparticles of smaller sizes relative to other 

channel configurations, such as the T-junction [4,5]. Images of the formation of a 

microbead at the junction of the PVA iron phase and the oil phase is shown in Figure 
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3.4. At the junction of the channels, the dispersed phase is constricted through the 

channel by the continuous phase, where droplets are formed. 

	
  

 

Figure 3.4 Microbead production using the flow-focusing microchannel design. 

The red arrow indicates flow of the dispersed phase (Table 3.1 solution 3) and the 

blue arrow indicates flow of the continuous phase (Table 3.2 continuous phase 

composition 5). 

Table 3.2 Microbead production process variable parameters 

Parameter Conditions 
Continuous phase 
composition 

1. hexane 
2. 1wt% Span80 in hexane 
3. 1wt% Span80 + 49.5wt% mineral oil in hexane 
4. undecane 
5. 1wt% Span80 in undecane  

Dispersed phase 
composition 

See solutions 1-4 in Table 3.1 

Flow rates Continuous phase: 10-25mL/h 
Dispersed phase: 0.1-2mL/h 

Collecting reservoir 
composition 

1. 0.5M NaOH in water 
2. 0.5M NaOH + 50v/v% ethanol in water 

Collecting reservoir 
temperature 

-20°C to room temperature 

The most favourable conditions for reproducible production of 100-200µm diameter 

microbeads were found. A continuous phase composed of 1wt% Span80 in undecane 

(Table 3.2 continuous phase composition 5) was selected. This was chosen based on a 
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match in viscosity of the undecane. The interaction of the dispersed and continuous 

phases, based on viscosity and interfacial tension, is an important factor. It has been 

reported that selection of a more viscous continuous phase allows better droplet 

formation [3]. This is consistent with our findings, as continuous phases containing 

undecane were more effective than those containing hexane. The wetting property of 

the fluids with the microchannel wall is also an important parameter. We found that the 

use of Span80 surfactant allowed more effective bead production. Xu et al. used a 

similar microchannel system composed of PMMA, and found that with the addition of 

Span80 to the immiscible phase, the PMMA surface was converted from partially 

hydrophilic to completely hydrophobic. Based on this, they added 0.1-2wt% Span80 to 

a continuous oil phase to produce better droplets of a dispersed water phase using the 

microchannel system [6].   

Optimal flow rates were also determined for our system. The continuous phase flow 

rate was maintained between 20 and 22mL/h and the flow rate of the dispersed phase 

was always kept at 1mL/h. These are similar flow rates to other work producing beads 

of a similar size range [6,7]. The collecting reservoir composition used was 0.5M 

NaOH in 50v/v% ethanol in water at room temperature.  

3.3.2 Microbead characterization 

Following iron oxide precipitation, bead collection, separation, and one FTC, images of 

the microbeads were taken, and an example is shown in Figure 3.5. It is clear that the 

shape of the microbeads is not spherical. This is suspected to result from the high 

viscosity of the solution used. The solidification process for the beads, involving iron 

oxide precipitation and reduced solubility of PVA in NaOH, is so fast that the beads 

retain a teardrop shape. Variations in the distance of the outlet tubing to the sodium 

hydroxide collecting reservoir as well as reservoir temperature did not result in a 

change in the microbead shape. The equivalent spherical diameter was calculated to be 

111.4 ± 39.4µm.  
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Figure 3.5 A) Optical image of microbeads fabricated using high iron PVA 

solution (Table 3.1 solution 2). B) Histogram of microbead equivalent spherical 

diameter fit to a Gaussian distribution. 

The obtained microbead size is desirable for our application, as beads of around 100µm 

can be easily administered by catheter and microbeads in this size range have been 

shown to reach the distal portions of a tumour and adequately occlude the tumour 

vessels [8,9,10]. However, the uniformity of these particles could be improved. 

Although microfluidics is a favourable approach to accomplish the production of 

monodisperse particles, we see a range of the resulting microbead equivalent spherical 

diameters. This could be due to non-optimized materials comprising the microchannel 

device, which result in undesirable interactions with the dispersed or continuous phases. 

Alternatively, there may be need for further optimization of the solution used as the 

continuous phase.   

The shape of the particles must also be considered. Some irregularly shaped 

embolization particles have been used, such as Contour™ PVA embolization particles 

[11], which indicates that the microbeads we have produced may be suitable. However, 

it has been suggested that spherical microparticles can reach more distal locations and 

result in a more complete blood vessel occlusion than irregular materials or material 

with irregular shape [12,13]. Nevertheless, the microbeads we have produced are 

uniformly shaped, as a droplet shape is consistently seen. These may perform better 
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than non-uniformly shaped particles. An additional argument for the use of uniformly 

shaped particles is a consistently calibrated drug loading [13]. We expect that drug 

loading consistency can be achieved for the microbeads produced here. Through the 

mechanism we propose for drug loading, which uses CNC to conjugate drug molecules, 

there exists the potential for highly uniform drug loading.   

The successful production of microbeads comprised of PVA and iron oxide 

demonstrates the design, fabrication, and application of a flow-focusing microchannel 

system. To the best of our knowledge, this is the first report of microbeads of the 

current composition and dimension. Preparation of iron oxide containing PVA beads 

with a diameter of 2mm has been shown [14]. This was accomplished through the 

dropwise addition of iron salts and PVA solution into alkaline solution through the use 

of a syringe fitted with a needle. Although this method is simple and produces beads of 

uniform size, they are too large to be useful for most drug delivery applications and are 

significantly larger than DEBs. We attempted the approach described by Zhou et al. 

and were unable to reduce bead diameter to below 1mm. Even through the reduction of 

needle gauge size, beads of applicable dimension could not be produced as a result of 

the surface tension present in the solution dropping from the needle tip. Through this 

experience, we chose to pursue the use of a microchannel device for the preparation of 

100-200µm diameter microbeads. Our approach using microfluidics is advantageous in 

its ability to produce small diameter microbeads. 

CNC containing PVA iron oxide microbeads were also prepared using the flow-

focusing microchannel. Conditions and procedure similar to that of the PVA iron oxide 

beads were used and the product microbeads are shown in Figure 3.6. With 

incorporation of CNC at 1wt% (Table 3.1 solution 3), we do not see a large difference 

in the morphology and size of the microbeads compared to microbeads without CNC. 

The average equivalent spherical diameter of the microbeads containing 1wt% CNC is 

108.2 ± 41.4µm. There is no statistically significant difference in the equivalent 

spherical diameters of the beads without CNC compared to those containing 1wt% 

CNC. This suggests that at this loading of CNC, there are no major alterations in the 

preparation procedure, or disruption to the size and uniformity of the microbeads. 
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However, when a large increase in the CNC loading was attempted using a solution 

with 10wt% CNC (Table 3.1 solution 4), we saw a substantial increase in microbead 

size (~600µm) and there was difficulty in production. This suggests that there is an 

upper limit to the amount of CNC able to be incorporated using this approach for our 

desired size range. Increasing CNC loading is expected to increase the system viscosity, 

which may hinder formation of 100-200µm microbeads. 

 

 

 

Figure 3.6 A) Optical image of microbeads fabricated using high iron PVA CNC 

solution (Table 3.1 solution 3). B) Histogram of microbead equivalent spherical 

diameter fit to a Gaussian distribution. 

SEM was performed on microbeads and these images are shown below in Figure 3.7.  

Figures A and B display the whole collapsed beads, and Figures C and D illustrate the 

surface morphology of the microbeads. The difference in size compared to the 

measurements described above is a result of the dehydration process used prior to 

imaging. Shrinkage occurred due to the removal of water. EDX was performed on the 

microbead (Figure 3.8) and the results confirm the presence of iron as a component of 

the bead.  
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Figure 3.7 SEM images of PVA iron oxide microbeads of approximately 40µm 

diameter.  Microbead size and shape is a result of the dehydration process. 

Figures A and B show whole beads and figures C and D display surface 

morphology. 

	
  
Figure 3.8 EDX spectrum of PVA iron oxide microbeads. A) Whole microbeads 

with a square specifying the location of EDX sampling. B) Spectrum indicating the 

presence of iron in the microbeads. 

Transmission electron microscopy images were taken of microtomed microbead 

samples. The iron oxide nanoparticles are very clearly displayed (Figure 3.9). There are 

several important aspects to consider when interpreting this result. First of all, the size 

of the nanoparticles is important. For use as a magnetically targeted drug carrier or 

imaging contrast enhancement agent (MRI and CT), nanoparticles must have high 

magnetization values, size of less than 100nm, and a narrow particle size distribution 

[15]. The nanoparticles that we see in the PVA matrix were found have a mean 

diameter of 28.0 ± 20.6nm, which fit the size requirements (see Appendix IV for size 

A	
   B	
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distribution). The large standard deviation is a result of some aggregates of two 

nanoparticles, and in rare cases, aggregates of more than two nanoparticles. Figure 3.10 

shows examples of these aggregates. Although aggregation is minimal, the measured 

particle size and standard deviation is larger than it would be for only single 

nanoparticles due to the inclusion of aggregates in the size measurement.  

 

Figure 3.9 TEM of PVA iron oxide microbead interior. 

	
  

Figure 3.10 TEM of PVA iron oxide microbead interior. The black arrow 

indicates an individual iron oxide nanoparticle, the blue arrow indicates an 

aggregate of 2 nanoparticles, and the red arrow indicates an aggregate of multiple 

particles. 
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Secondly, and arguably of more importance, is the distribution of the iron oxide 

nanoparticles within the PVA matrix. Aggregation of iron oxide nanoparticles is a 

common problem that exists due to interactions between particles. When aggregates 

form, magnetic dipole-dipole attractions occur between them and ferromagnetic 

behavior results [16,17], which is less desirable than superparamagnetic behavior for 

biomedical applications. In our case, aggregation is not a serious problem.  

The low level of iron oxide nanoparticle aggregation can be understood in terms of the 

particle formation process. In the current process, Fe2+ and Fe3+ are uniformly 

distributed in the matrix of the PVA microbeads. Iron oxide is formed by in situ 

precipitation within the liquid PVA hydrogel matrix by diffusion of NaOH into it. The 

viscosity of the PVA solution hinders the movement of the iron oxide nuclei and limits 

their growth. As the PVA beads are solidified using the LTTC process, the iron oxide 

nanoparticles are immobilized in space within the hydrogel matrix of the microbeads, 

leading to the small size and low level of aggregation observed. The clusters of multiple 

nanoparticles are most likely formed by nucleation independently, due to local 

concentration fluctuations of iron chlorides, rather than due to an aggregation process.  

Coating of iron oxide nanoparticles with PVA has been reported in the literature to 

result in monodisperse particles without aggregation [15,18,19], and the PVA acts as a 

stabilizing agent in ferrofluids [20]. In one study where iron oxide precipitation was 

completed in aqueous PVA, it was suggested that PVA can bind irreversibly to the 

magnetite surface [21]. In work by Gonzalez et al., magnetite nanoparticles of less than 

50nm in size were produced in PVA films through a similar process – the co-

precipitation of iron salts in PVA followed by physically crosslinking. Low levels of 

aggregation were also observed. It was hypothesized that adsorption of PVA to the 

magnetite surface through the interaction of the PVA hydroxyl groups with iron oxide 

controls the growth and aggregation of nanoparticles [22]. 

To characterize the nature of the iron oxide nanoparticles, XRD was performed on a 

dried microbead sample made form the high iron PVA CNC solution (Table 3.1 

solution 3). The low signal to noise ratio of the XRD pattern shown in Figure 3.11A is 
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due to the limited sample size used. Since PVA is a polymer of limited degree of 

crystallinity, its XRD pattern is more ill defined and stretches over a broad 2θ range. 

This also limits the signal to noise ratio and identification of other Fe3O4 diffraction 

peaks. However, certain characteristic peaks are visible, which justifies the presence of 

PVA and iron oxide in the form of magnetite (Fe3O4). The diffraction peak 

corresponding to Fe3O4 can be identified by comparing to a standard XRD pattern for 

magnetite (International Centre for Diffraction Data (ICCD) card number 00-019-0629 

from PDF-4+ software) (Figure 3.11B). Additional information is presented in 

Appendix II. The most intense peaks for magnetite occur at 2θ values of 35°, 41°, and 

74°. In the XRD for the microbeads produced in this work (Figure 3.11A), we see a 

significant peak occurring at 22°, which corresponds to PVA, consistent with our data 

in section 4.3.1 (Figure 4.2) and literature reports [23,24]. There are also three main 

peaks at 33°, 41°, and 74°, consistent with characteristic magnetite peaks. There is 

slight shift in location and relative intensity of the first peak, at 33°, compared to the 

standard magnetite sample, at 35°. This is probably due to the small sample size, 

resulting in a highly noisy pattern. Alternatively, there may be slight change in the 

crystal structure of the iron oxide in the microbeads compared to a standard magnetite 

curve. However, we compared the microbead diffraction pattern to that of another 

possible resulting form of iron oxide – maghemite – and the peaks do not align. Given 

the proximity of the microbead diffraction peaks to a standard magnetite pattern, we 

can conclude that magnetite is likely the form of iron oxide present. Microbead 

production using a similar method is consistent with this result [14]. Furthermore, our 

results coming up in section 4.3.1 for a film of the same composition very clearly 

illustrate the presence of magnetite. No specific peak is detected for CNC because the 

relative composition is very low.  
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Figure 3.11 A) XRD pattern of PVA iron oxide CNC microbeads. B) ICCD card 

for magnetite (number 00-019-0629). 

Magnetite occurs in an inverse spinal structure with both ferrous and ferric ions and 

oxygen. Magnetite, depending on nanoparticle size, is superparamagnetic, meaning that 

it does not retain magnetism after the magnetic field is removed. The presence of iron 

oxide nanoparticles in the form of magnetite is promising for future work in magnetic 

targeting of these microbeads or use in magnetic resonance imaging.  Zhou et al. 

demonstrated that the 2mm PVA iron oxide beads they produced had 

superparamagnetic properties [14]. Vibrating sample magnetometer measurements 

were attempted on our microbead samples, but due to sample size limitations, reliable 

results could not be obtained. Instead, we investigated the effect of an external 

magnetic field on these microbeads. 

In the presence of a strong magnet, we are able to visually demonstrate the magnetic 

properties of the beads. Microbeads composed of high iron PVA CNC solution (Table 

3.1 solution 3) were suspended in PBS and an external magnetic field was applied 

using a strong permanent magnet. Images were taken of the microbeads movement 

towards the permanent magnet and their settling upon removal of the magnetic field as 

shown in Figure 3.12. Qualitatively, this demonstrates the ability to mobilize and locate 

the microbead using an external magnetic field. Further work in this area should be 

completed to better investigate magnetic properties as there could be great potential for 

this system to be used for magnetic localization.  
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Figure 3.12 Movement of PVA iron oxide microbeads towards a permanent 

magnet. 

3.3.3 Microbead visualization 

The ability to visualize this class of microbead using clinical CT was demonstrated on 

beads of low iron oxide loading in PVA (Table 3.1 solution 1). Microbeads were placed 

in PBS solution in tubes and imaged. What can be seen in Figure 3.13A is suspension 

containing a small quantity of microbeads at the bottom of the tube. The 40mg quantity 

of beads is understandably more visible than 20mg of beads, due to the presence of a 

greater amount of Fe3O4-containing particles. However, it is difficult to detect the 

enhanced contrast in either sample. Figure 3.13B is the same image processed using 

different settings of the window width and level of the CT machine. At this contrast and 

sensitivity, we are better able to visualize the presence of the higher contrast 

microbeads at the bottom of the tubes. However, this contrast is weak, and unlikely to 

be sufficient for practical use, as the microbeads appear very similar to the PBS control, 

even when accumulated at the base of the tube. In order to enhance the contrast, a 

larger quantity of iron was added to the solution for microbead preparation. 

Suspended beads        Magnet introduced                                            Magnet removed  All beads are located 
at the magnetic field 

Complete settling  
due to gravity 
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Figure 3.13 CT images of low iron PVA microbeads at quantities of 40 and 20 mg. 

A) and B) represent different window/level settings of the CT machine (W/L of 

650/100 (A) and 426/183 (B)). 

Subsequent CT experiments were performed using microbeads of the higher iron oxide 

loading and containing CNC (Table 3.1 solution 3). These beads, at loading levels of 

11-50mg in PBS, were imaged using CT. Results are shown in Figure 3.14A. Since 

cellulose is of similar elemental composition as PVA, it is not expected to contribute to 

any CT contrast. At similar bead loadings, an enhanced contrast can clearly be seen 

compared to the microbeads shown in Figure 3.13. The amount of iron loading in 

microbeads is an important factor in the level of visibility, and at the higher 

concentration of iron, we are able to see increased contrast. The samples in Figure 

3.14B contain the same quantities of sample, but are plain PVA samples containing no 

iron oxide, and used as a control. We are not able to visualize any contrast enhancement 

in these samples thus confirming the positive effect of iron oxide in CT imaging. It can 

be concluded that the PVA iron oxide CNC microbeads provide improved visualization 

compared to plain PVA samples and that greater amounts of iron result in greater 

contrast.   



www.manaraa.com

	
  
	
  

	
  

60 

	
  

Figure 3.14 CT images of 50, 25 and 11mg quantities of sample. A) Tubes contain 

microbeads fabricated using the high iron PVA CNC. B) Tubes contains control 

samples of plain PVA. (W/L of 650/100). 

Figure 3.14 illustrates the ability to detect the high iron PVA CNC microbeads relative 

to PBS under CT. The lowest quantity of beads does become harder to differentiate 

from the fluid, which leads to the conclusion that some accumulation of beads is 

necessary to result in a high enough contrast for adequate detection. For clinical 

applications in TACE therapy, 1-4mL of microbeads is typically used [11]. For 

volumes such as this, and given that accumulation of beads does occur, the level of 

contrast enhancement we are seeing from small quantities of beads may be appropriate. 

Of course, work demonstrating the use of these microbeads in vivo would need to be 

completed to properly assess this. Not only is PBS not equivalent to tissue, but also, the 

level of accumulation of beads in the vasculature is an important factor in determining 

whether these microbeads would be visible. Nevertheless, the ability to detect these 

microbeads in PBS using CT has been demonstrated, and this preliminary work 

encourages further studies using this system.  
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In the imaging of Lipodiol-loaded PVA microspheres with CT, the researchers were 

able to demonstrate the ability to visualize beads in the terminal location of swine liver 

after injection of 0.2mL of packed beads, with increased visualization after additional 

0.2mL increments up to 1mL [25]. These quantities are comparable to the amounts we 

have imaged. However, in vivo detection is very different than in vitro detection and we 

expect to require a much greater amount of beads to provide enough contrast to 

visualize microbeads within tumour tissue due to the higher X-ray attenuation of tissue 

[26]. 

An important note about the microbeads we have fabricated is that they are also 

expected to be visible in MRI, as superparamagnetic nanoparticles provide high 

contrast due to enhanced proton relaxation [27]. It would be useful to image the beads 

under MR and compare this to CT results.  Depending on the quantity of accumulated 

microbeads in tissue vasculature, one of these imaging modalities might prove to be 

more useful. Alternatively, the ability to image these microbeads using multiple 

imaging modalities may make them desirable candidates for use in investigation of 

microbead distribution in tumour sites, or for the visualization of the therapeutic 

delivery process. 

3.3.4 Cellulose nanocrystal characterization 

The proposed multifunctional microbead system outlined in this thesis involves the use 

of CNC as a nanocarrier for therapeutic molecules. A necessary step in the use of CNC 

for drug conjugation is its functionalization and the quantification of the functionalized 

group. Through a hydrolysis reaction using hydrogen peroxide to break down bacterial 

cellulose into cellulose nanocrystals, the conversion of the hydroxyl groups to 

carboxylic acid groups has been demonstrated [28]. The carboxylic acid group will 

serve as the site for drug conjugation through ionic association for a chemotherapeutic 

molecule such as Dox. Conditions for and amount of drug conjugation is dependent on 

the concentrations of carboxylic acid groups and its pKa. These were determined for 

the CNC samples we used by titration.  
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The titration curve for CNC (Figure 3.15) illustrates a right-shifted curve relative to the 

control sample and the BC sample. The carboxyl content calculated using Equation 2 

was found to be 8.36 ± 0.56mmol/g CNC, which is substantially higher than similar 

previous work. Spaic reported a carboxyl content of 1.13 ± 0.02mmol/g BC following a 

TEMPO-mediated oxidation, and Cook reported a carboxyl content of 0.97 ± 

0.18mmol/g CNC using a hydrogen peroxide reaction similar to our work [28]. Other 

work, on oxidized cotton derived cellulose, demonstrated an even lower carboxyl 

content of 0.7mmol/g [29]. The level of carboxylic group we determined is one of the 

highest reported, which is beneficial for maximum drug loading. 

	
  

Figure 3.15 Titration of 0.1g BC and CNC in 1mM HCl with 1mM NaOH. 

The pKa of CNC was found to be 3.71, which is comparable to that of other carboxylic 

acid groups (formic acid has a pKa of 3.76, and acetic acid has a pKa of 4.74 [30]). 

Similar work completed on the oxidation of cellulose report pKa values at 3.90 for BC 

[31], and 2.96 for CNC [28]. At appropriate loading conditions, CNC with a pKa in this 

range will be able to able to ionically conjugate drug molecules such as as Dox, with a 

pKa of 8.3 [32]. 

We have developed a system that under appropriate conditions, will be able to load 

drug molecules such as doxorubicin to the CNC surface. The release mechanism of 

drug molecules from the microbead would not only rely on ionic dissociation of the 

drug from the CNC, but also diffusion out of the microbead. Based on what has been 
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described in section 2.5.1, the diffusion of drug molecules from the PVA matrix can be 

controlled through alterations in the processing conditions. For example, if a slow drug 

release is desired, additional FTCs can be performed to the microbeads after drug 

loading. Release rate and profile from this system can thus be tailored for specific 

applications. 

3.4 Conclusions 

In this chapter, we have demonstrated the ability to produce PVA iron oxide CNC 

microbeads through a microfluidic system consisting of a flow-focusing microchannel.  

Beads were produced in the desired size range of roughly 100µm equivalent spherical 

diameter. The microbead material has been characterized in terms of structure and 

morphology, and the presence of iron in the form of iron oxide, specifically magnetite, 

has been demonstrated. Microbeads have been shown to have monodisperse iron oxide 

nanoparticles embedded, which impart magnetic properties to the material and also 

allows for visualization with CT. Microbeads composed of CNC and a high iron oxide 

content in PVA are detectable under CT at microbead quantities between 11 and 50mg. 

Successful functionalization of CNC with a high carboxyl content has been 

demonstrated, showing the potential for drug delivery.   
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4 CHAPTER 4 – ‘Degradable’ PVA Iron Oxide Hydrogel  

4.1 Introduction 

In this chapter, we explore the use of iron oxide nanoparticle formation in PVA as a 

crosslinking method in conjunction with physical crosslinking achieved using low 

temperature thermal cycling. Gonzalez et al.’s work on PVA iron oxide gels formed 

through low temperature thermal cycling of PVA, followed by the addition of iron ions 

and subsequent precipitation into iron oxide demonstrated that the PVA iron oxide gel 

had increased degree of crystallinity and melting point [1]. This provides evidence that 

iron oxide contributes to crosslinking within the PVA hydrogel.  We hypothesized that 

the removal of iron from PVA iron oxide hydrogels will reduce the crosslinking, and 

therefore stability, of the material, allowing dissolution to occur. Dissolution studies 

were performed on bulk hydrogel material and the dissolution was compared for films 

in solutions of varying pH and in the presence of iron chelating agents. Iron release and 

mass loss data was collected, as well as mechanical testing data. This work 

demonstrates the ability of this biomaterial to ‘degrade’ over time, which may be very 

advantageous for drug delivery and embolization purposes. The importance of this 

work extends to other areas of research involving the use of stimulus-responsive 

hydrogels, such as tissue engineering.  

4.2 Materials and methods 

All chemicals used were ACS reagent grade and purchased from Sigma-Aldrich (St. 

Louis, MO, USA). Distilled water was used for all experiments.  

4.2.1 Solution preparation 

Composition of the solution used was the high iron PVA content (Table 3.1 solution 2) 

as listed in chapter 3. The preparation procedure was as detailed in the material and 

methods section in chapter 3 (section 3.2.1). A 5wt% PVA solution was used as a 

control.  
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4.2.2 Hydrogel film fabrication 

The solution was poured into moulds (Buna-N rubber) with rectangular openings 

(10cm by 5cm by 0.2cm) sandwiched between sheets of Teflon. The Teflon sheets were 

held between aluminum sheets and screwed together to ensure the moulds were tightly 

sealed. The moulds were placed in a water bath for 6 thermal cycles from 20°C to         

-20°C to 20°C at 0.1C/min, with one holding hour at the temperature limits. 

Subsequently, films were removed from the moulds and submerged in a 0.5M NaOH 

solution for 24 hours. Films were removed and then submerged in water for a day with 

constant replacing of the water until the pH reached neutral. Films were then cut into 

5mm by 5mm strips and wrapped in plastic wrap and sealed.  

4.2.3 X-ray diffraction 

Films were dried at 60°C overnight and crushed using mortar and pestle with liquid 

nitrogen. XRD was performed using a Rigaku-Rotaflex Diffractometer (RU-200BH) 

with a Co-kα radiation (λ =1.79 Å) at 30kV and 44mA. Spectra with a 2θ diffraction 

angle were scanned from 0° to 82° with a 0.2° step size.  The PVA iron oxide film was 

loaded onto a glass slide and the PVA film was loaded onto a glass slide with double-

sided tape. A background scan was performed on the blank slide with tape, and the 

relative peaks were subtracted from the sample peaks of the applicable sample. Spectra 

were plotted from a 2θ of 10° to 82°.  

4.2.4 Iron release quantification 

Films were removed from the plastic wrap and each sample was weighed. Samples 

were placed into 3mL of solutions of water at pH 6, hydrochloric acid (HCl) adjusted to 

a pH of 2, or a 0.05M ethylenediametetraacetic acid disodium salt (EDTA) solution, all 

at room temperature. After a given amount of time, the sample was removed from 

solution and put into new solution. Solutions were analyzed for iron content using 

atomic absorption spectroscopy (AAS) (Varian Spectra AA 55) with a multi-element 

lamp (Fe/Co/Ni/Mn/Cu/Cr Varian Spectra AA Lamp) at a wavelength of 248.3 nm. The 

absorbance was converted into a concentration using a calibration curve of iron 
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standard solution (Fluka, Sigma Aldrich) created at the time of each sampling. 

Concentration was converted into a mass by multiplying by the volume of the solution. 

This was plotted as a fraction of the initial sample mass. This was repeated at various 

time points over 101 days and iron release was plotted against time. 

4.2.5 Mass loss quantification 

At each time point, when the PVA iron oxide film sample was removed from solution, 

it was blotted to remove excess liquid, and weighed. The mass loss was plotted against 

time. Mass loss was calculated using the following equation. 

𝑀𝑎𝑠𝑠  𝑙𝑜𝑠𝑠   % =   !!!!
!!

×100                         (3) 

where mi is the initial sample mass and m is the mass of the sample at a given time 

point. The first time point of the film mass loss in EDTA solution was excluded 

because an increase in mass occurred due to swelling. This is to be expected as a result 

of some initial rehydration after the film processing, and was not included in mass loss 

data. 

4.2.6 Mechanical testing 

Tensile testing was completed on film samples to analyze the effect of iron oxide 

precipitation in terms of crosslinking the PVA matrix, as well as the removal of iron 

oxide. Films both before and after submergence in sodium hydroxide were tested. 

Briefly, samples of film were cut into 10mm by 25mm strips. Four different types of 

materials were tested: 1) PVA with iron chlorides after 6 FTCs (before iron oxide 

precipitation); 2) PVA with iron oxide after 6 FTCs and iron oxide precipitation; 3) 

PVA with iron oxide after 6 FTCs and after being treated in EDTA for 2 days; and 

finally, 4) PVA with iron oxide after 6 FTCs and after being treated in EDTA for 4 

days. 

Tensile testing was performed using a hydraulically powered material testing system 

(MTS Bionix 858). A 1kg load cell and an attachment for sample loading was used.  

The sample thickness was measured using a custom-designed Mitutoyo gauge thickness 

tester with samples fit into grooves in aluminum block to prevent deformation.  
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Samples were held in a custom-designed tissue grip set with a distance of 20mm 

between the two grips. Uniaxial tensile tests were performed at a strain rate of 4mm/s 

using a 16mm ramp (constant strain) with a sampling rate of 5kHz. Samples were 

subjected to preconditioning prior to testing. This is standard procedure for the purpose 

of removing any residual stresses in the material. 10 cycles of preconditioning using a 

sine wave with 3.5mm amplitude was used. 

Raw data was converted into stress and strain and subsequently plotted. Some negative 

stress values resulted and this could be due to several factors. First of all, the samples 

used in this work are weak, and because there is noise generated due to the dead weight 

of the load cell and sample attachment piece, the data at low strain values may be 

partially a result of this noise. This may also be due to the acceleration of the equipment 

from 0 to 4mm/s. Some time is required for the machine to respond and accelerate, and 

so initial points on the curve may not be accurate. Finally, due to the sample non-

uniformity as a result of iron oxide incorporation and release, the stress experienced 

does not necessarily follow a predictable trend. For these reasons, negative stress values 

were not used in the fitted curves.  

Stress-strain data was also converted into elastic modulus at given strain values by 

taking the derivative of the stress-strain function. Statistical analysis was performed 

using a one-way ANOVA with a Tukey’s post hoc test, and a p-value of  <0.05 was 

considered significant (GraphPad Prism).  

4.3 Results and Discussion 

In order to study the dissolution of this material, films were produced rather than 

microbeads, as adequate amounts of sample were better able to be produced, and more 

reliable measurements could be made. However, the trends seen in this section of the 

work are expected to be applicable to the material we have proposed as a 

multifunctional visualization and delivery system. One main difference in the 

processing of the material was implemented – the number of FTCs was increased to 6 

and this was performed before iron oxide precipitation through exposure to a sodium 

hydroxide bath. This was due to the challenges in handling the material as some level 
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of physical crosslinking is necessary to maintain the dimensional stability of the 

hydrogel.  

4.3.1 Film characterization 

After 6 FTCs, 5% PVA solutions containing iron chlorides resulted in a yellow film 

(Figure 4.1A). Following the submergence in a sodium hydroxide bath, the film turned 

black in colour (Figure 4.1B). 

	
  

Figure 4.1 Films after 6 FTC. A) PVA iron chlorides film (prior to submergence in 

NaOH). B) PVA iron oxide film (after submergence in NaOH).                            

(Note: these films are from separate samples). 

XRD of the PVA iron oxide film was performed and compared to a film of plain 5% 

PVA (Figure 4.2A). A peak occurring at a 2θ of 22° can be seen in the plain PVA 

sample. This is in agreement with other reported data [2,3]. In the PVA iron oxide 

sample, the same peak for PVA is displayed, as well as peaks for iron oxide in the form 

of magnetite (Fe3O4). Besides the same PVA peak at 22°, six characteristic peaks are 

evident, occurring at 35°, 41°, 50°, 63°, 67° and 74°. The peaks and their relative 

intensities are consistent with the standard XRD pattern of Fe3O4 shown in Figure 4.2B 

(ICCD card 00-019-0629 from PDF-4+ software).   
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Figure 4.2 A) XRD pattern of PVA films and PVA iron oxide films. B) ICCD card 

for magnetite (number 00-019-0629), 

4.3.2 Iron release 

The release of iron from the PVA iron oxide hydrogel was studied in release media 

containing EDTA (0.05M), HCl (pH 2) and water (pH 6) at room temperature. The 

cumulative release of iron over time is displayed in Figure 4.3. It is evident that the 

environmental parameters, namely presence of iron chelators and the pH of the solution 

surrounding the material, has a significant effect on the rate and quantity of iron 

released. A lower pH resulted in a greater release of iron, which is to be expected as a 

result of iron oxide solubilization. Furthermore, in the presence of EDTA, a chelating 

agent, a much greater amount of iron is released. The low pH (4.43) of the 0.05M 

EDTA solution as well as the ability of EDTA to extract and solubilize iron oxide can 

explain our observation. In water at pH 6, we see very little release of iron with only a 

0.02 ± 0.003wt% release occurring after just over 100 days.  

A	
   B	
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Figure 4.3 Cumulative iron released from PVA iron oxide films (as a percent of 

initial sample mass) over 100 days in solutions of EDTA solution, HCl solution, 

and H2O. 

To better understand the mechanism of iron release from the material, we investigate 

models studied for drug or solute release. A diffusion model for release of drug 

molecules or solutes from a thin film has been developed according to Fick’s second 

law. Equation 4 is the early time approximation for diffusion-controlled release [4]. 

!!
!!

= 4 !"
!!!

!
!   𝑓𝑜𝑟  0 ≤ !!

!!
≤ 0.6                       (4) 

Mt is amount of solute released at t, M∞ is the total amount of solute loaded, t is time, D 

is the diffusion coefficient, and l is the thickness of the matrix.  

The system studied in this work was prepared as a film, so the thin film model can be 

applied. Since the total amount of solute loaded (M∞) is unknown, this model cannot be 

used to its full extent. We are not able to determine D, the diffusion coefficient. 

However, Equation 4 can be rearranged to the give Equation 5. It can be seen that the 

release amount over time (Mt) is proportional to the square root of time. 

𝑀! =
!!!!

!
!

!
!
!!

𝑡
!
!                    (5) 

Accordingly, a plot of the cumulative release versus the square root of time was made 

for the release in all three media (Figure 4.4). In Figure 4.4, the data correlates linearly 
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for the iron release in HCl and H2O solutions with R2 values of 0.997 and 0.955 

respectively. For the iron release in EDTA, only the initial section ( !!
!!

≤ 0.6) is 

included in the model. Based on this section, a line fits with an R2 value of 0.991. This 

indicates that the cumulative iron release has a linear relationship with the square root 

of time when the iron release is less than 60% of the total iron loading. From this, we 

can conclude iron release follows the diffusion model, meaning that the release of iron 

from PVA iron oxide films is diffusion-controlled.   

 

Figure 4.4 Cumulative iron released from PVA iron oxide films (as a percent of 

initial sample mass) versus the square root of time. 

4.3.3 Total mass loss/ film dissolution 

We hypothesized that the iron oxide nanoparticles provide some level of crosslinking 

within the PVA matrix, and the stability of the hydrogel material resulted from a 

combination of iron oxide crosslinking and crosslinking from the low temperature 

thermal cycling process. As iron is removed from the sample, the material will begin to 

fall apart. However, we are unable to determine if degradation, or rather erosion – a 

physical dissolution and diffusion of a polymer [5], of the material has occurred simply 

from the iron release results. Release from a degradable matrix can occur through one 

of three methods: release from physical entrapment as the polymer degrades, release as 

covalent bonds between the drug and polymer are broken, or diffusion controlled 

release from physical entrapment followed by delayed polymer degradation [6]. 
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Because we have demonstrated the iron release follows a diffusion-controlled release 

mechanism, the most likely method of degradation, if it does indeed occur, is the third 

alternative.  

The amount of total hydrogel mass lost in solution over time was measured and 

compared to plain PVA films containing no iron oxide as control (Figure 4.5). Samples 

placed in EDTA and HCl solutions were plotted. Both the PVA iron oxide film and 

plain PVA film samples submerged in water actually increased in mass, due to swelling 

as the sample rehydrated and reached equilibrium. Because of this, and the low release 

of iron, the samples in water are not shown. Data for the samples in water can be seen 

in Appendix V. 

As shown in Figure 4.5, the rate of dissolution of the PVA iron oxide material is much 

greater than that of the control PVA samples. In fact, at 45 days, the total mass loss of 

PVA iron oxide films is 4.45 and 3.59 times greater than plain PVA films in HCl and 

EDTA respectively. Similarly, at 73 days, the total mass loss of PVA iron oxide films is 

4.08 and 3.41 times greater than PVA films in HCl and EDTA respectively (raw data in 

Appendix V). The amount of film mass loss over time could be a result of any, or a 

combination of, the three following effects: iron extraction, osmotic effect, or PVA 

dissolution. 

  
Figure 4.5 Total mass lost from PVA iron oxide films and PVA films (as a percent 

of initial sample mass) over 100 days in A) EDTA solution B) HCl solution. 
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First of all, we have demonstrated that the release of iron occurs in the PVA iron oxide 

films. This contributes to a mass loss of approximately 2.94wt% and 0.45wt% of the 

initial sample mass in EDTA and HCl respectively. Secondly, in the presence of salts, 

we expect an osmotic effect to occur and water to be driven out the hydrogel. Results 

reported by Patachia et al. demonstrated an approximate 10% mass loss of PVA 

hydrogels in 1M salt solutions, and this reached equilibrium after roughly 25 hours. In 

3M salt solution, mass loss increased to roughly 40% [7]. This phenomenon likely 

contributes to some of the mass loss, especially in the initial time points as it reaches 

equilibrium. However, the concentration of ethylenediametetraacetic acid disodium salt 

(EDTA) used in our work was 0.05M, much lower than electrolyte concentrations used 

in work by Patachia et al., and therefore mass loss due water loss through an osmotic 

effect is expected to be significantly lower. As well, the difference in mass loss shown 

for PVA iron oxide films relative to control PVA films support the claim that water loss 

through osmotic effect is not the only other contributing factor. PVA dissolution must 

account for the remaining mass loss.  

Small amounts of PVA dissolution typically occur in PVA hydrogels produced through 

the LTTC process from the amorphous regions of the hydrogel [8-11]. In our 

experiment, there is likely to be some dissolution of PVA in both PVA iron oxide films 

and control PVA films. However, the difference in mass loss for the PVA iron oxide 

films and control PVA films is significant. The difference between these two samples is 

the presence of iron oxide, but the difference in mass loss cannot be attributed to solely 

through loss of iron or loss of water. This indicates that the presence, and subsequent 

removal, of iron oxide from the film actually affects the degree of PVA dissolution, 

resulting in much greater PVA dissolution.  

4.3.4 Contribution of iron release to film dissolution 

An additional comparison can be made by comparing the shape of the curves for iron 

release and total mass loss (Figure 4.6). When cumulative iron released and total mass 

lost are plotted together, very similar curves are observed over time. This occurs for 

films in both the EDTA and HCl solutions. The rates of iron release and total mass loss 
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are very similar, which clearly demonstrates the effect that iron release has on the 

dissolution of the entire hydrogel material.  

  
Figure 4.6 Total mass lost and cumulative iron released (both as a percent of 

initial sample mass) over 100 days in A) EDTA solution, and B) HCl solution. The 

left hand y-axis displays total mass lost (%) and the right hand y-axis displays 

cumulative iron released (%). 

The total mass loss of PVA iron oxide films after over 100 days in EDTA and HCl are 

53.6 ± 5.2%, 41.6 ± 2.9% (Figures 4.5 and 4.6). This is a substantial amount of 

dissolution, as roughly half of the original sample mass has disappeared. PVA iron 

oxide film results in a greater extent of dissolution compared to plain PVA film in the 

presence of low pH and chelating agents. It is difficult to make direct comparisons with 

work in the literature as samples were prepared using PVA of different molecular 

weights, solution concentrations, and types of dissolution media [7,9-11]. However, 

there do not seem to be any reports of PVA hydrogels reaching the extent of dissolution 

that we have found in this work on PVA containing iron oxide.  

4.3.5 Mechanical testing 

To confirm that iron oxide takes part in the crosslinking of the hydrogel matrix, and 

also that the release of iron aids in the material dissolution, mechanical testing was 

performed on the samples. Figure 4.7 shows stress-strain curves for four different 

materials: 1) PVA with iron chlorides after 6 FTCs (before iron oxide precipitation); 2) 
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PVA with iron oxide after 6 FTCs and iron oxide precipitation; 3) PVA with iron oxide 

after 6 FTCs and after being treated in EDTA for 2 days; and finally, 4) PVA with iron 

oxide fully after 6 FTCs and after being treated in EDTA for 4 days. Treatment in 

EDTA was completed because this solution had the most accelerated iron extraction, so 

would be able to accomplish iron release quickly and demonstrate the effect of iron 

release on material strength. PVA iron chlorides films (1) was crosslinked only through 

the low temperature thermal cycling process; PVA iron oxide films (2) was crosslinked 

through both the LTTC process as well as iron oxide precipitation; and the PVA iron 

oxide films after treatment in EDTA (3 and 4) were crosslinked through the LTTC 

process and iron oxide precipitation, and subsequently had iron released into solution 

for various amounts of time.  

   

 

 

 

 

 

 

 

Figure 4.7 Stress-strain curves for four film samples. A) PVA iron chlorides film. 

B) PVA iron oxide film. C) PVA iron oxide film after EDTA treatment for 2 days. 

D) PVA iron oxide film after EDTA treatment for 4 days. 

Stress-strain data for PVA based materials is non-linear, and several equations have 

been proposed to model this data [12]. After attempting several different models, a 
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commonly used exponential model with two fitting parameters (Equation 6) was found 

to be the best fit for the data present here.  

𝜎 = 𝐴𝑒𝑥𝑝(𝐵𝜀)           (6) 

The material that was treated in EDTA for 4 days became so weak that three of the 

samples broke during testing. The two sets of sample data plotted in Figure 4.7D are 

extremely noisy and random. The material became so weak that it passed the limit that 

our equipment is accurately able to test. For these reasons, this data was not included in 

the following comparison. 

Figure 4.8 shows the fitted curves for materials shown in Figures 4.7 A, B, and C. The 

PVA iron chlorides stress-strain curve is the lowest on the graph, meaning it is the 

weakest material (curve A). After iron oxide precipitation, the stress strain curve 

increases, indicating that there is a strengthening of the material after the iron chlorides 

are converted into iron oxide (curve B). This supports the notion that the precipitation 

of iron oxide within the PVA matrix provides a certain level of crosslinking. The film 

treated in EDTA for two days has a lower curve in between curves A and B, indicating 

weakening in the material after iron was released but it was still stronger than the 

sample with no iron oxide crosslinking (curve C). This confirms that iron removal 

weakens the material, and is consistent with the dissolution of the material.   

	
  
Figure 4.8 Fitted stress-strain curves for PVA iron chloride film, PVA iron oxide 

film, and PVA iron oxide film after EDTA treatment for 2 days. 
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A comparison of the elastic modulus of the three materials at a strain of 50% shows a 

similar trend (Figure 4.9) and there is a significant difference between the elastic 

modulus of the PVA iron oxide films compared to the PVA iron oxide films after 2 

days of treatment in EDTA solution. This indicates that the release of iron into EDTA 

solution weakens the material significantly, providing further evidence that material 

dissolution occurs due to the reduction in crosslinking. It is important to note that the 

EDTA solution used does not represent tissue conditions, and we chose to treat the 

films in this solution mainly to accelerate the iron release for demonstration of material 

dissolution. 

	
  

Figure 4.9 Elastic modulus at 50% strain for PVA iron chloride film, PVA iron 

oxide film, and PVA iron oxide film after EDTA treatment for 2 days.   
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iron chlorides. We expect that if fewer FTCs were performed on this material, 

weakening with iron oxide removal would occur at a faster rate. This provides an 

approach to tune the rate of dissolution of the PVA hydrogels for specific applications. 

When we relate the material studied in this section to the microbeads produced in 
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of iron oxide occurs before low temperature thermal cycling for the microbeads. This 

provides enough bead stability that 6 FTCs are not required. If only one FTC is used on 

the beads after iron oxide precipitation, for example, we expect that the dissolution of a 

bead may occur much quicker, or to a fuller extent, than the film described here. This is 

promising for application as a ‘degradable’ multifunctional drug delivery system.  

The media that we have performed dissolution in does not perfectly resemble that of 

physiological tissue. However, we have been able to determine the trends that affect the 

dissolution of this material. A low pH enhances iron release and material dissolution, as 

does the presence of chelating agents to extract iron. Tumour tissue has a pH that is 

slightly lower than that of healthy tissue, sitting at roughly at 6.5 [15]. There are also 

many natural chelating agents present in the body. Specifically, transferrin, mainly 

produced in the liver, is a binding protein in the blood that facilitates iron uptake [16]. 

These types of environmental conditions present in the body may assist in the 

dissolution of PVA iron oxide material.   

4.4 Conclusions 

In this chapter, we have produced films using a combination of low temperature 

thermal cycling and iron oxide precipitation and studied the effect of the two forms of 

crosslinking together. We were able to demonstrate that iron is released by a diffusion-

controlled process from PVA Fe3O4 films over time, and this is highly dependent on 

environmental parameters. A lower pH and presence of chelating agents result in 

enhanced iron release. Additionally, we have shown that the release of iron from the 

film corresponds to a total mass loss of the material, and this total mass loss happens to 

a much greater extent for PVA Fe3O4 films compared to plain PVA films. Mechanical 

testing demonstrated that iron oxide precipitation does strengthen the material, and then 

subsequent iron release weakens it, resulting in eventual breakage. Overall, we have 

shown that this PVA iron oxide hydrogel material can ‘degrade’ over time by a 

dissolution mechanism in the presence of low pH or through the extraction of iron, 

which has not been shown for physically crosslinked PVA hydrogels otherwise. This 

ability to degrade is important for the application of multifunctional visualization and 
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drug delivery systems as they will degrade rather than accumulate in the body. Material 

with properties such as this could also find application in other areas, such as tissue 

engineering, as a dissolvable, magnetically stimulated scaffold material.  
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CHAPTER 5 – Conclusions and Future Goals 
 

There is a constant need to improve treatment of cancer as it remains a highly prevalent 

and deadly illness. For loco-regional treatment of liver cancer tumours, the use of drug-

eluting embolization microbeads is a very promising treatment. However, areas of 

improvement have been identified, and work to enhance the products used for this 

treatment could translate into a better understanding of the treatment as well as 

improved patient outcomes. We have identified several main design criteria for a novel 

multifunctional ‘nano-on-micro’ visualization and delivery system that incorporates 

improvements to current systems, and we attempted to address these through the work 

presented in this thesis. 

We have demonstrated the production of PVA iron oxide CNC microbeads that can be 

visualized with CT, have magnetic properties which could allow magnetic localization, 

have the potential to be loaded with therapeutics, and are composed of a material that 

we have shown to ‘degrade’ over time. This multifunctional system has many desirable 

properties that make it a good candidate for use in TACE or other contrast enhancement 

and drug delivery applications.  

There are several directions that this work can follow moving into the future. We would 

like to see these microbeads visualized with MRI, as the presence of magnetite 

nanoparticles lends itself well to this type of imaging. As well, we would like to 

explore, in detail, the drug loading and release mechanisms of this system with 

doxorubicin. It would also be interesting and valuable to explore the magnetic 

localization capability of these microbeads. Additionally, the dissolution study 

performed on the bulk hydrogel material should be compared to dissolution of the 

microbeads themselves. Finally, in terms of application, researching the use of these 

microbeads in animal models would be a logical step to determine their viability as a 

visible drug-eluting embolization system.   
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Indeed, the work that we have completed here demonstrates the production of a 

promising system that should be further studied for use as a multifunctional 

visualization and drug delivery system.  
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APPENDICES 

Appendix I – Bacterial Cellulose Growth and Harvest Procedure 

The bacterial cellulose (BC) was grown in a static culture with media consisting of 

0.22M fructose, 26.63mM ammonium sulphate, 7.34mM monobasic potassium 

phosphate, 1.01mM magnesium sulphate heptahydrate, 14.28mM tri-sodium citrate, 

45.80mM citric acid and 5g/L yeast extract. 200mL of media were placed in 500mL 

Erlenmeyer flasks, autoclaved for 30 minutes, inoculated with G. xylinus (BPR 2001) 

bacteria that was cultivated in our lab, and sealed with glass wool and tinfoil. The flasks 

were stored in an incubator at room temperature for 3 weeks before extracting the 

cellulose. The cellulose pellicles that formed were removed from the flasks and blended 

with water using a Commercial Laboratory Blender (51BL30). The mixture was 

centrifuged at room temperature at 15,000 rpm for 5 minutes (Sorvall Refrigerated 

Superspeed Centrifuge; model RC-5B & RC-5C), and the collected sample was re-

suspended in a 1w/v% NaOH solution for 3 hours at 80°C to remove any remaining 

bacterial cells. The mixture was again centrifuged, collected and re-suspended in water 

and this was repeated three times for adequate washing. The resulting cellulose was 

stored at 4°C.  
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Appendix II – Standard XRD Pattern for Magnetite 
Corresponding to ICCD card number 00-019-0629 
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Appendix III – Alternative Microfluidic Device Designs 

Three designs that tested for microbead production are shown in Table 1.  

Table 1. Microchannel device designs for production of PVA iron oxide CNC 
microbeads 

Design 1. T-junction 2. Modified T-junction 3. Flow-focusing 

Figure  

 

 
Red channel width is 
127µm. Blue channel 
width is 500µm. 

 

Red channel width is 
127µm. Blue channel 
width is 500µm. 

 

Red channel width is 
200µm with a narrow 
section of 127µm. 
Blue channels have a 
width of 500µm. 

Description Dispersed phase (PVA 
iron phase) flows 
perpendicular to the 
continuous phase (oil 
phase), meeting at a 
T-junction. 

Dispersed phase (PVA 
iron phase) flows 
perpendicular to the 
continuous phase (oil 
phase), meeting at a T-
junction with a raised 
notch to improve 
shearing of the 
microbead from the wall.  

Dispersed phase (PVA 
iron phase) flow is 
directed through  a 
channel by the 
continuous phase (oil 
phase) flowing from 
two directions. 

The initial T-junction design resulted in the formation of slugs – elongated droplets – of 

the dispersed phase. Quite rapidly, this transformed into a stream of the dispersed phase 

flowing along the side of the microchannel, parallel to the oil phase.  Beads could not 

be produced this way, but instead a constant stream of the dispersed phase solution 

resulted. The modified T-junction design allowed for production of microbeads.  

Images of the dispersed phase flowing against a continuous phase in the modified T-

junction design are shown in Figure 1 and 2. Initially, fully formed beads were 
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produced (Figure 1), followed quickly by bead slugging (Figure 2). An additional issue 

associated with the use of this design was the size limit that existed. The large channel 

was 500µm in width, and even with a change in the flow rates, beads filled the entire 

channel (Figure 3.4). This was not able to produce beads of the desired particle size.  

The flow-focusing design was successful for microbead production. 

 

Figure 1. Microbead production using modified T-junction microchannel. The red 

arrow indicates the PVA iron phase flow and the blue arrow indicates the oil 

phase flow. 

 

 

Figure 2. Microbead slugging in modified T-junction microchannel. The red arrow 

indicates the PVA iron phase flow and the blue arrow indicates the oil phase flow. 
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Appendix IV – Iron oxide nanoparticle size measurement 
A 

 
 

B 

 

C 

 
 

D 

 
 
 

E 

 
 

F 

 
 
 

Figure 1. A,C,E) TEM images of iron oxide nanoparticles in PVA matrix. B,D,F) 

Corresponding outlines of particles analyzed by Image J particle analyzer with 

threshold set between 0-80. 
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Figure 2. Histogram of equivalent spherical diameter of iron oxide nanoparticles 

in PVA matrix from TEM images. 
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Appendix V – Data for Iron Release and Mass Loss From PVA Iron Oxide 

Films 

 
Table 1. Cumulative iron released from PVA iron oxide films as a percent of 
initial sample mass in EDTA solution 

Time (days) Average Fe release (%) Standard deviation (%) 
0 0 0 
2.05 0.637 0.040 
4.07 1.081 0.067 
6.02 1.287 0.114 
8.94 1.527 0.116 
15.01 1.889 0.143 
25.06 2.289 0.127 
35.12 2.619 0.148 
45.06 2.856 0.131 
55.06 2.920 0.132 
73.07 2.930 0.134 
100.99 2.941 0.144 
 

Table 2. Cumulative iron released from PVA iron oxide films as a percent of 
initial sample mass into HCl solution 

Time (days) Average Fe release (%) Standard deviation (%) 
0 0 0 
3 0.074 0.006 
4.00 0.093 0.006 
6.00 0.124 0.009 
9 0.153 0.010 
15.07 0.192 0.012 
25.16 0.239 0.013 
35.06 0.276 0.014 
45.07 0.313 0.016 
54.91 0.346 0.018 
73.09 0.391 0.020 
102.03 0.451 0.024 
 
Table 3. Cumulative iron released from PVA iron oxide films as a percent of 
initial sample mass into H2O  

Time (days) Average Fe release (%) Standard deviation (%) 
0 0 0 
25.13 0.008 0.001 
73.05 0.014 0.002 
101.98 0.020 0.003 
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Table 4. Mass lost of PVA iron oxide films in EDTA solution as percent of initial 
sample mass  

PVA Iron Oxide PVA 
Time 
(days) 

Average 
percent loss 
(%) 

Standard 
deviation 
(%) 

Time 
(days) 

Average 
percent loss 
(%) 

Standard 
deviation 
(%) 

0 0 0 0 0 0 
2.05 -10.442 3.823 2.001 1.943 1.932 
4.07 2.388 2.043 4.088 3.857 2.206 
6.02 9.549 3.126 6.066 5.203 2.586 
8.94 16.115 3.400 8.007 5.123 3.209 
15.01 26.593 3.182 15.128 12.329 3.966 
25.06 34.043 3.332 26.212 11.328 2.417 
35.12 39.165 3.913 37.139 12.220 1.764 
45.06 44.168 3.433 45.219 12.266 3.086 
55.06 47.573 3.113 55.059 13.840 1.992 
73.07 50.083 3.755 73.080 14.738 1.879 
100.99 53.609 5.151       
 
 
Table 5. Mass lost of PVA iron oxide films in HCl solution as percent of initial 
sample mass  

PVA Iron Oxide PVA 
Time 
(days) 

Average 
percent loss 
(%) 

Standard 
deviation 
(%) 

Time 
(days) 

Average 
percent loss 
(%) 

Standard 
deviation 
(%) 

0.00 0.000 0.000 0.000 0.000 0.000 
3.00 8.137 2.989 2.005 1.054 3.204 
4.00 9.266 3.088 4.090 0.230 3.410 
6.00 10.142 3.252 6.066 2.084 3.452 
9.00 13.069 6.604 8.009 0.937 4.085 
15.07 15.394 3.508 15.132 6.100 5.695 
25.16 19.305 3.950 26.212 4.616 3.896 
35.06 22.874 4.420 37.139 7.543 4.931 
45.07 26.660 3.836 45.219 5.957 4.614 
54.91 30.069 3.396 55.063 6.607 5.815 
73.09 33.866 3.579 73.083 8.278 4.160 
102.03 41.553 2.944    
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Table 6. Mass lost of PVA iron oxide films in H2O solution as percent of initial 
sample mass  

PVA Iron Oxide PVA 
Time 
(days) 

Average 
percent loss 
(%) 

Standard 
deviation 
(%) 

Time 
(days) 

Average 
percent loss 
(%) 

Standard 
deviation 
(%) 

0.00 0.000 0.000 0.000 0.000 0.000 
25.13 -39.168 4.181 26.214 -9.508 4.540 
73.05 -45.040 2.882 73.083 -3.849 3.977 
101.98 -31.708 6.828    
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